Dioden

P_70_001.docx

Lehrfach: Grundlagen der Elektronik Versuch: Dioden und Diodenschaltungen

© Hochschule Zittau/Görlitz; Fakultät Elektrotechnik und Informatik

Prof. Kühne März 2018

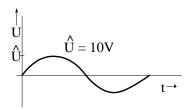
Bearb.:Dipl.-Ing. (FH) Pohl

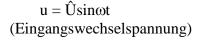
Versuchsziel

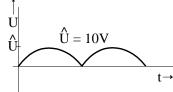
- Kennen lernen nichtlinearer Bauelemente, deren Kennlinien und Zweipolparameter
- Berechnung und praktische Erprobung von Gleichrichter-, Z-Dioden- und LED-Schaltungen

1. Theoretische Grundlagen

Wiederholen Sie das Thema "Dioden" anhand von Vorlesung und Seminar. Machen Sie sich mit dem Aufbau von Halbleiterdioden und der Funktionsweise eines pn-Überganges vertraut.


2. Schriftliche Vorbereitungen


Wiederholen Sie den Aufbau der Messschaltungen für die Aufnahme der Strom-Spannungs-Kennlinien $\mathbf{I_F} = \mathbf{f}(\mathbf{U_F})$ (LED) und $\mathbf{I_Z} = \mathbf{f}(\mathbf{U_Z})$ (Z-Diode).


Für jede Messung ist ein Messschaltplan (mit Strom- bzw. Spannungsmesser und Oszilloskop) an zu fertigen! Ergänzen Sie dazu die Schaltungen der Versuche 1 bis 3.

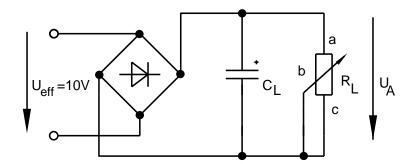
- 2.1 Wiederholen Sie die Begriffe arithmetischer und quadratischer Mittelwert! Was ist bei der Wahl der Messgeräte zu beachten?
 Berechnen Sie für die angegebenen Spannungs-Zeit-Verläufe den
 - a) Effektivwert
 - b) Spitzenwert
 - c) arithmetischen Mittelwert
- a) Spitzenwert
- b) arithmetischen
 - Mittelwert
- a) Spitzenwert
- b) arithmetischen

Mittelwert

(Zweiweggleichrichtung ohne Ladekondensator)

(Zweiweggleichrichtung mit Ladekondensator)

2.2 Berechnen Sie für die im Versuch 2 angegebene Schaltung die Vorwiderstände R_{Vmin} und


$$R_{Vmax}$$
. Gegeben: $U_Z = 5.1 \text{ V}$; $P_{Vtot} = 250 \text{ mW}$; $R_{Lmin} = 330 \Omega$; $R_{Lmax} = \infty$ $U_{Emin} = 7 \text{ V}$; $U_{Emax} = 9 \text{ V}$

Bestimmen Sie aus R_{Vmin} und R_{Vmax} einen geeigneten Vorwiderstand R_{V} aus der E24-Reihe. Konstruieren Sie die Verlustleistungshyperbel für $P_{Vtot} = 250$ mW in das Diagramm des Z-Dioden-Kennlinienfeldes.

Versuch 1: Gleichrichterdioden-Gleichrichterschaltung

Zweiweggleichrichtung: Brückenschaltung

Versuchsschaltung

Ermitteln Sie messtechnisch für die Brückenschaltung die Abhängigkeit der Ausgangsspannung U_A vom Laststrom I_L , $U_A = \mathbf{f}(I_L)$, für folgenden Ladekondensatoren:

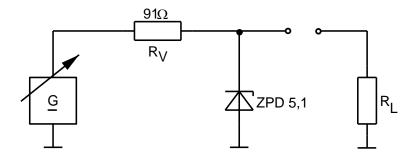
$$C_L = 0$$
; 470 µF; 2200 µF, $I_{Lmax} = 150 \text{ mA} (\mathbf{R}_L = \mathbf{500} \Omega \text{ benutzen!})$

Messen Sie die Restwelligkeit U_{BRSS} der Gleichrichterschaltung mit Hilfe eines Oszilloskops in Abhängigkeit vom Laststrom I_L , $U_{BRSS} = f(I_L)$, für $C_L = 470 \,\mu\text{F}$; 2200 μF , $I_{Lmax} = 150 \,\text{mA}$.

Stellen Sie grafisch die erhaltenen Messreihen der Funktionen $U_A = f(I_L)$ und $U_{BRSS} = f(I_L)$ für die Zweiweggleichrichterschaltung in jeweils einem Diagramm dar.

Vergleichen Sie die erhaltenen Ergebnisse der einzelnen Messreihen, welche Schlussfolgerungen ergeben sich daraus für den praktischen Einsatz?

Berechnen Sie für die unterschiedlichen Ladekondensatoren den maximal zulässigen Laststrom, wenn der Spitzenwert der Restwelligkeit nicht größer als 5 % des Mittelwertes der Ausgangsspannung sein soll. Der Innenwiderstand des Transformators ist $R_i = 0.5 \Omega$.


Welche weiteren Zweiweg- Gleichrichterschaltungen gibt es noch? Wodurch unterscheiden sich diese von der Brückenschaltung?

Wie groß kann der maximal zulässigen Laststrom sein, wenn man die gleichen Parameter für die Einweg- Gleichrichterschaltung festlegt?

Versuch 2: Silizium-Z-Diode

Für die Silizium-Z-Diode ZPD 5,1 ist die Strom-Spannungs-Kennlinie $\mathbf{I_Z} = \mathbf{f}(\mathbf{U_Z})$ für $\mathbf{I_Z} = 0$ - 60 mA aufzunehmen und in einem Diagramm darzustellen! Stellen Sie den ausgewählten Wert des Vorwiderstandes $\mathbf{R_V}$ (E24) mit Hilfe eines Dekaden-Widerstandes ein und schalten Sie diesen bei Versuchsdurchführung in die Schaltung.

Versuchsschaltung

Bestimmen Sie grafisch I_{Zmax} und I_{Zmin} , wobei $U_{Zmin} = 0.95 U_{Zmax}$ betragen soll.

Ermitteln Sie messtechnisch R_{Vmin} und R_{Vmax}.

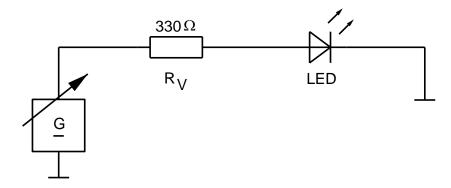
Vergleichen Sie die gemessenen Werte für R_V mit denen in der Vorbereitung berechneten Werten.

Bestimmen Sie den Arbeitsbereich der Z-Diode, mit dem ausgewählten Vorwiderstand R_V und einer Eingangsspannung U_E von 9 V, für folgende Lastwiderstände R_L = 330 Ω , 1 k Ω und ∞ .

Tragen Sie dazu den Strom I_Z in Abhängigkeit von den Lastwiderständen in das Diagramm ein.

Berechnen Sie den differenziellen Widerstand r_Z bei $I_Z = 25$ mA.

Welche Größen haben Einfluss auf den Stabilisierungsfaktor S der Schaltung? Berechnen Sie den Stabilisierungsfaktor S mit den gegebenen und ermittelten Werten.


Versuch 3: Lumineszenz-Dioden

Nehmen Sie für die Lumineszenz-Dioden

- LED rot
- LED grün

die Strom-Spannungs-Kennlinien $I_F = f(U_F)$ im Bereich für $I_F = 0$ - 25 mA auf!

Versuchsschaltung

Stellen Sie grafisch die Strom-Spannungs-Kennlinie $\mathbf{I_F} = \mathbf{f}(\mathbf{U_F})$ beider LED in einem Diagramm dar.

Geben Sie für beide LED's die Schleusenspannung U_S an!

Diskutieren Sie die erhaltenen Ergebnisse!

Berechnen Sie für einen Transistor als Schalter den Vorwiderstand R_V für beide Lumineszenz-Dioden. Ermitteln Sie den Spannungsabfall über den LED´s grafisch aus der Strom-Spannungs-Kennlinie ($I_C = I_D$).

$$U_{B}=12V$$
 $I_{C}=15\text{mA}$