Prof. DrIng. habil. Pr	March 2010	
Prakt_RT2_03SC	Exercise: State control	
SC	Course: Automatic Control Theory	Fakultät Elektrotechnik

Lab. Eng.: DI Sbieschni

1 Objective

Calculation and adjustment of state controller parameters, analysis of the characteristics of state controlled systems.

2 Preparation

- 2.1 Repeat the methods for parameter estimation of delay elements by use of the unit step response!
- 2.2 Repeat the lecture chapters "2. State space description of linear systems" and "3. Design and characteristics of state controllers"!
- 2.3 Ascertain the coefficients of the state representation with \underline{q}_m according to the lecture for a drive with separately excited dc motor using the following parameter sets a und b!

a) T _A = 27,5 ms	T _M = 549 ms	$k\Phi$ = 2,02 Vs	R = 8,1 Ω	$K_{S} = 31,9$	
$C_i = 1 V^{-1}A$	$C_{\omega} = 18,4 \text{ V}^{-1}\text{s}^{-1}$				
b) T _A = 25,2 ms	T _M = 219 ms	$k\Phi$ = 2 Vs	R = 8,45 Ω	$K_{S} = 32,5$	
$C_i = 1 V^{-1}A$	$C_{\odot} = 16.6 \text{ V}^{-1} \text{s}^{-1}$	-1			

- 2.4 Dimension a state controller with the characteristics $\omega_{Gr} = 25 \text{ s}^{-1}$ und $\alpha = 2$ for a drive with separately excited dc motor and the state representation with \underline{q}_m according to exercise 2.3!
- 2.5 Calculate for the drive with state controller according to exercise 2.4 the magnitude of the steady state error and calculate a cascaded compensator to eliminate this steady state error!
- 2.6 Design a state controller without steady state error for the drive according to exercise 2.3 with the characteristics $\omega_{Gr} = 25 \text{ s}^{-1}$ und $\alpha = 2!$

3 Duties

- 3.1 Investigation of the behaviour of the drive with state controller and cascaded compensator according to 2.4/2.5
 - a) Measure for the steady state the voltages u_{ω} and the armature currents in the operating point $U_{e0} = 3,6$ V with the braking torque settings 5,0; 6,5; 8,0 at the inverter and calculate R_{z2} .
 - b) Investigate the transient behaviour in the operating point $U_{e0} = 3,6$ V and with the step amplitude $\Delta u_e = 0,2$ V, braking torque setting 5,0.
- 3.2 Investigation of the behaviour of the drive with state controller without steady state error according to 2.6
 - a) Measure for the steady state the voltages u_{ω} and the armature currents in the operating point $U_{e0} = 3,6$ V with the braking torque settings 5,0; 6,5; 8,0 at the inverter and calculate R_{z2} .
 - b) Investigate the transient behaviour in the operating point $U_{e0} = 3,6$ V and with the step amplitude $\Delta u_e = 0,2$ V, braking torque setting 5,0.

4 Report (Interpretation)

Evaluate the exercise results and compare them with the values given in the lecture!