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Motivation & Objectives

Spline-Based Table Look-up Method (SBTL)

Application of the SBTL Method

Problem Statement:

» Deviations in calculated fluid properties lead to inaccurate mass, energy, and
entropy balances. — Property calculation algorithms need to be very accurate.

> Fluid properties are calculated extremely often, which consumes the majority of the
computing time.  — Property functions need to be extremely fast.

» CFD solvers require continuity and numerical consistency of the equations to be
solved. — Property functions need to be continuous and consistent.

'Real Fluid Properties in CFD (example: water and st eam):
» Equations of State (EOS): e« Cubic EQS, e.g., Peng-Robinson EOS (PR-EOQOS)
« Fundamental EOS, e.g., IAPWS-95 [1] or -IF97 [2]
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Colored contours: deviations of PR-EOS from IAPWS-95
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Computing-Time Ratio (CTR): IAPWS-IF97 Region
Function 1 (liquid) 2 (vapor)
CTR = Comp. Time of IAPWS-IF97 (-95) p(v,u) 4.8 (88) 9.0 (114)
Comp. Time of PR-EOS T(v,u) 4.8 (91) 9.3 (115)
T(p,h) 0.419 (23) 0.609 (43)
Phase/region tests are not included in these CTR values v(p,h) 0.489 (23) 0.919 (43)

; o .
and increase the computing times even further! a) IAPWS-IF97 backward equation and one Newton step

» Table Look-Up Methods (interpolation from tabulated values):

grid of nodes (i, j)

Calculation of any property z(X;,X,):

%o « Discrete values z;(x, ;,X,;) are calculated at the nodes (i,j)
P :’ —eel{ii}  from an equation of state and stored in a look-up table.
X . . . S .

 During the CFD simulation, the cell {i,j} in the grid of
nodes is to be determined and z(x,,x,) is interpolated.
i x X X

Accuracy and computing speed depend on the structure of the grid of nodes and
the applied interpolation algorithm.

Shortcomings of currently applied methods:

* Nodes are often clustered to consider the nonlinear behavior of the fluid property
function, which leads to computationally intensive cell search algorithms.

« Most frequently applied property functions are often calculated from inverse
functions, rather than from an explicit forward function.

« Bi-linear interpolation cannot provide continuous 15t derivatives.

L Bi-cubic interpolation leads to computationally intensive inverse functions.

J
~

Objectives of this Project:
Development of new table look-up algorithms that overcome the shortcomings outlined

above and provide: « fast and accurate property functions with cont. 15t derivatives

-
Example: p(v,u)
grid of nodes (i, j)

1) Variable transformations (e.g.,

grid of knots
« to reshape the range of

3) Definition of cells in the grid of

cell {i, i}

V,

v
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v—V) to:

« enhance accuracy (linearization)

State

2) Definition of a rectangular, piecewise equidistant
grid of nodes (fast cell search alg.)

knots

4) Calculation of all coefficients ay, of the bi-
quadratic spline-polynomial (cont. 1st derivatives):
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Inverse Functions, e.g.,

u(p,v):

Calculation of inverse functions:
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« fast and numerically consistent inverse functions

‘Simulation of Condensing Steam Flow Around a Fixed Blade wit

h the
CFD-Software TRACE [3], developed at DLR:
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equilibrium condensation
(no sub-cooling considered)
* homogeneous two-phase flow

Inlet: « p;;, = 41.7kPa Assumptions: «

* Ty = 357.5K (AT,=+7.5K)

Outlet:  p,,, = 20.6kPa

Key Results:

» The numerical results show negligible differences from those obtained with the
direct application of IAPWS-1F97.

» Computing times for flow simulations considering the real fluid behavior are reduced
by a factor of 10 with regard to simulations based on IAPWS-IF97.

» With regard to the application of the ideal-gas model, the computing times are
increased by a factor of 1.4 only.

Further Applications (Selection):

» RELAP-7 (nuclear-reactor system safety analysis cod e,
developed at the Idaho National Laboratory (INL)):
— simplified property calculation algorithms have been replaced with fast and
accurate SBTL functions; applied in a 7-eg. non-equilibrium two-phase model

» KRAWAL (heat-cycle calculation software for power p lant design,
developed at SIEMENS PG):

— the overall computing time is reduced by 50% with regard to calculations based

on IAPWS-IF97 )

Conclusions and Outlook

(The newly developed SBTL method [4,5,6]: )

« enables the consideration of the real fluid behavior in CFD and other compu-
tationally intensive process simulations with high accuracy and low computing times.

« can be applied to any fluid (SBTL functions can be generated with FluidSplines).

« is being applied successfully in numerical process simulations.

* is being extended for mixtures, e.g., humid air and humid combustion gases.

A nucleation model is being implemented in TRACE to consider sub-cooling. )

. » Generation of SBTL functions for any fluid,
optimized for: « specified range of validity
« desired accuracy <
« computational speed

xxxxx

~ » Underlying property formulations are
calculated from: « REFPROP p={p
* HSZG libraries
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