

Europäische Union

Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des vom Sächsischen Landtag beschlossenen Haushaltes.

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Ressourcenuniversität. Seit 1765.

Estimation of Tire Wear Contamination in Soil and Snowmelt Samples via Tire Wear-associated Markers

2nd Tire Wear Workshop: 28. November 2024

M.Sc. Tomas Kleint

1. State of the Art

- 2. Aiming for Feasible Quantification
- 3. Sampling
- 4. Determination of Inorganic and Organic Marker Substances
- 5. Externally Determined Concentrations: A Compairison

Tire Wear determination: State of the Art

Widely used methods:

- Quantification via Pyrolysis-GC/MS \rightarrow identification and quantification via characteristic ions for most prevalent tire rubber types (SBR, PiB and PBR)
- Rather experimental: Microscopic quantification attempts via particle shape and prevalence of certain elements

Issues:

- Equipment usually very unique and cost intensive: often not available in smaller labs
- high organic content \rightarrow other pyrolysis products overlay with TW peaks
- Microscopic identification via µFTIR and µRAMAN often impaired due to the black color of TW particles and a wide range of possible environmental components aggregated with the tire wear particle

Die Ressourcenuniversität. Seit 1765

Pic.1: Schematic diagramm of Py-GC/MS [1]

Aiming for Feasible Quantification

Our main goal:

- Find correlation between a combination of characteristic markers and • actual tire wear concentration
- Organization of a correlation matrix for evaluation and comparison • with externally determined tire wear concentration:
- \rightarrow Which markers / marker combinations are the most useful?

Idea:

Tire wear containing several, more easily detectable organic and inorganic substances ("markers substances") \rightarrow Assumption: Partial leaching from the particles into the surrounding soil (to equilibrium)

Die Ressourcenuniversität. Seit 1765.

Pic.2: Markers leaching from particles into the soil

Aiming for Feasible Quantification

Approach by Indirect Methods:

- For determination / estimation: Multiple, independent parameters necessary (Specifity!)
- Organic (2-Hydroxybenzothiazole (2-OHBT)*, 6-PPD-Quinone (6-PPDQ), 1,3-Diphenylguanidine (1,3-DPG)) and inorganic analytes (Zn, Cu, Pb) tested
- Analytical Equipment:
 - AES: Zinc and other heavy metals (e.g.: Cu, Pb) (*Agilent 4210 MP-AES*)
 - UHPLC-MS/MS: organic analytes (*ExionLC* system with QTOF X500R and ESI) \rightarrow in coop. Doc. Stanislavá Vrchovecka (TU Liberec)

Evaluation:

<u>Compairison to "classically" determined concentrations:</u>

- Particle-based methods (Snowmelt): SGS Institut FRESENIUS \rightarrow Bright- and Dark-Field ۲ Microscopy, micro-FTIR, SEM/EDX
- Mass-based methods (Soil): Eurofins Ost GmbH \rightarrow Pyrolysis-GC/MS

Die Ressourcenuniversität. Seit 1765

,NH ĊH₃ NH NH ,NH NH OH

Pic.3: 6-PPD-Quinone (top), 1,3-DPG (middle) and 2-Hydroxybenzothiazole (bottom)

Pic. 4 and 5: Sampling Locations near Gera at BAB 4 and collection scheme

Die Ressourcenuniversität. Seit 1765.

Sampling

Sampling

Pic.6 and 7: Locations of lowly contaminated soil samples

Die Ressourcenuniversität. Seit 1765.

Pic. 8 and 9: Locations snow samples

Die Ressourcenuniversität. Seit 1765.

Sampling

Inorganic Marker Substances (1)

Sample preparation Snow / Snowmelt:

- Freezer (-18°C) for Storage
- Thawing and high pressure filtration (p=6 bar; cut-off: ≥0,45µm)
- Acidification to 0.5% HNO₃ + 2.0g/I CsNO₃ (Inhibition of **Ionization**)

Note:

Unexpected, high Zinc-Concentration in sample K1 (> Snow C!), Copper and Lead significantly lower than in A, B and C

Die Ressourcenuniversität. Seit 1765

Inorganic Marker Substances (2)

Cu/Zn-ratio very similar in Autobahn soil samples

Die Ressourcenuniversität. Seit 1765.

Tyre and road wear related heavy metals in soils

10

Organic Marker Substances (1)

	700
Sample preparation snowmelt:	
 Extraction with OASIS HLB-cartridges 	s (solid phase 600
extraction (SPE)),	50(
 Re-Solution of analytes from solid pha 	ase: 5ml MeOH-
MTBE-mixture	⊑ 400
 Evaporation under vacuum 	
 Re-Suspension in 1,0 ml MeOH:H₂O ((+0,1% HCOOH) –
mixture; filtration	200
	10(
Note:	
	(
Unexpectedly high 2-OHBT concentrati	ion in K1 (> snow
sample C!, similar to Zn), 6PPDQ and 1	1,3-DPG as
expected	

Die Ressourcenuniversität. Seit 1765.

Mean error of determination: $\pm 10\%$

Blanks (Snowmelt/SPE):

2-OHBT	1,3-DPG	6-PPD-Q
5,38 ng/l	2,25 ng/l	22,13 ng/l

Organic Marker Substances (2)

Sample preparation soils:

- Ultrasound Extraction: 1,0g soil in 10ml Isopropyl alcohol (iPrOH); duration: 1,0h
- centrifugation, first filtration and evaporation under vacuum at room temperature
- Re-Suspension in 1,0 ml MeOH:H₂O (+0,1% HCOOH) solution; 2nd filtration (ps: 0,22µm)

Note:

6-PPDQ seemingly correlates with the expected TW load, 2-OHBT and 1,3-DPG appear less specific: highest conc. In soil directly next to pavement but no clear trend visible in samples taken at further distance

Die Ressourcenuniversität. Seit 1765

<u>Blanks (Snowmelt/SPE):</u>		
2-OHBT	1,3-DPG	6-PPD-Q
1,83 ng/g	0,19 ng/g	<loq< td=""></loq<>

Comparison with externally determined TW concentrations

External Analytics carried out by Eurofins Ost and the SGS Institute FRESENIUS:

Particle-based analytics (snowmelt):

- Experiments concluded, results in early December 2024
- Aliquoting and purification with H_2O_2 , filtration onto Si-membranes •
- preview with bright and dark field microscopy \rightarrow TRWP often with characteristic \bullet shape and color
- Attempted particle classification: SEM/EDX and FTIR spectra of suspected tire wear particles
- Two fractions: (1) Particles \geq 500 µm and (2) Particles <500µm
- Suspicious particles (≥500µm) in A, B and C, none in K1 ۲
- Difficulty: Particles $< 500 \mu m$ tend to aggregate

Comparison with externally determined TW concentrations

External Analytics carried out by Eurofins Ost and the Institute FRESENIUS:

Pyrolysis-GC/MS (soil)

- Determination via TW-characteristic pyrolysis products of PBR, PiP and SBR
- Unfortunately: only "A4 + 5,0cm" with significant tire wear concentration >LOQ
- Remaining soils: $<LOQ \rightarrow$ Issue: high amount of soil organic matter, extremely small aliquots necessary, plus: classification of • pyrolysis products impaired
- Currently, no real insight in sample preparation procedures at Eurofins ۲

Soil*	c _(RC) [µg/kg]
A4 +5.0cm	13200
Other Soils	<20.0
* Soil extract after preparation	

Comparison with externally determined TW concentrations

Conclusions:

- At current state: Mainly a collection of marker concentrations
- Interpretation of tire wear concentrations in snowmelt crucial for further evaluation
- No correlation matrix for mathematical evaluation is currently in sight due to lack of sufficient external data!
- Combination of individual markers seems promising, e.g.: Zinc + 6-PPD-Quinone and 2-Hydroxybenzothiazole

Europäische Union

Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des vom Sächsischen Landtag beschlossenen Haushaltes.

2nd Tire Wear Workshop: 28. November 2024

Sampling:

- Soils: four locations with suspected high and three with suspected low TW intake \rightarrow Autobahn A4: exit 58b (acceleration lane)*: 3 samples with increasing distance of 0,05 m; 1,0 m; 2,0 m from the pavement + 1 from the adjacent trench \rightarrow 2 soils from small rivers' banks: Buttermilchwasser ("BMW") a. Löbauer Wasser ("LW"), a. one from a remote field in Käbschütztal ("HAU-2")
- <u>Snow:</u> 3 with high expected TW concentrations from roadsides of S133 and (2) 1 with a low one (freshly fallen snow from a mountainous grove in the "Zittauer Gebirge"

