Internationale Elektrotechnik - Olympiade

NEISSE – ELEKTRO

Formulas

english edition

version 2017-03

Simple Circuit

electrical voltage U	$U = \phi_1 - \phi_2$	φ1	electrical potential of point 1
electrical current I	$I = \frac{dQ}{dt}$ under the condition of a stationary current (I = constant) apply to: $I = \frac{Q}{t}$	φ ₂ Q t	electrical potential of point 2 electric charge time
current density S	$S = \frac{I}{A}$] [- U ₀
electrical resistor R	$R = \frac{U}{I}$		R ↓
electrical conductance G	$G = \frac{1}{R}$		←
electrical power P	$P = U \cdot I$]	0
electrical work W	$W = P \cdot t$	U_0	voltage of the voltage source
OHM`s law	under the condition $\vartheta = \text{constant apply to:}$ $U \sim I, \frac{U}{I} = \text{constant}$		
assessment of resistor	under the condition $\vartheta = \text{constant apply to:}$ $R = \frac{\rho \cdot 1}{A}$		
electrical conductivity $\gamma(\kappa)$	$\gamma = \frac{1}{\rho}$	θ ρ	temperature specific electrical resistance
influence of the temperature on the electrical resistor	$\Delta R = \alpha \cdot R_{20} \cdot \Delta \vartheta \text{ with } \Delta \vartheta = \vartheta - 20^{\circ} C$ $R_{\vartheta} = R_{20} (1 + \alpha \cdot \Delta \vartheta)$	$ \begin{array}{c} \mathbf{I} \\ \mathbf{A} \\ \mathbf{R}_{\vartheta} \\ \mathbf{R}_{20} \\ \alpha \end{array} $	resistor by 20 °C temperature coefficient

Direct current circuits

Series connection of resistors

$$I = I_1 = I_2 = ... = I_n$$
$$U_q = U_1 + U_2 + ...U_n$$
$$R = R_1 + R_2 + ...R_n$$

potential divider rule:

$$\frac{U_1}{U_2} = \frac{R_1}{R_2} \qquad \qquad \frac{U_1}{U_q} = \frac{R_1}{R}$$

Parallel connection of resistors

Network transformation

Transformation
$$\land \longrightarrow \Delta$$

 $R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}$
 $R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}$
 $R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_2}$

$$\frac{Transformation}{R_{1} = \frac{R_{12} R_{31}}{R_{12} + R_{23} + R_{31}}}$$

$$R_{2} = \frac{R_{23} R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} = \frac{R_{31} R_{23}}{R_{12} + R_{23} + R_{31}}$$

Electrical field

electrical charge Q COULOMB's law	$Q = N \cdot e$ $Q = \int_{t_1}^{t} I(t) dt$ for point charces, apply to: $F = \frac{1}{4\pi \cdot \varepsilon_0 \cdot \varepsilon_r} = \frac{Q_1 \cdot Q_2}{r^2}$	$ \begin{array}{c c} N & number \ of \ Electrones \\ e & elementary \ charge (p. 14) \\ I & current \ intensity \\ t & time \\ F & force \\ \epsilon_0 & permitivity \ (vacuum) \ (p. 14) \\ \epsilon_r & dielectric \ constant \\ r & distance \ between \ the \ point \ charges \\ \end{array} $
electrical field strength E	$\vec{E} = \frac{\vec{F}}{Q}$ for homogeneous electric field, apply to: $E = \frac{U}{s}$	$\begin{array}{c c} Q_1 & \overrightarrow{F_1} & \overrightarrow{F_2} & Q_2 \\ \hline & & r \\ \hline \hline & r \\ \hline & r \\ \hline & r \\ \hline \\ \hline & r \\ \hline \\ \hline & r \\ \hline \hline & r \\ \hline \hline \\ \hline & r \\ \hline \hline \\ \hline & r \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$
electrical flux density D	$\vec{D} = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}$ for vacuum apply to: $\varepsilon_r = 1$	
dielectric constant ε	$\epsilon = \epsilon_0 \cdot \epsilon_r$	
electrical flux Ψ	$\Psi = \int \vec{D} d\vec{A}$ under the condition $\vec{D} = \text{constant und } \vec{D} \parallel \vec{A}$ apply to: $\Psi = D \cdot A$	A area
electrical potential φ	$\phi = \frac{W}{Q} \qquad \phi = \int_{P_0}^{P_1} \vec{E}(s) d\vec{s}$	P ₁ • P ₂
electrical voltage U	$U = \varphi_1 - \varphi_2 U = \int_{P_2}^{P_1} \vec{E}(s) d\vec{s}$ P2 for homogeneous field, apply to: $U = \vec{E} \cdot \vec{s}$	 W dislocation work on a charge Q in the electrical field φ₁ electrical potential in point P₁ φ₂ electrical potential in point P₂ s distance

Capacitors

capacitance C of an capacitor	$C = \frac{Q}{U}$	
breakdown strength E _d	$E_d = \frac{U}{d}$	
electrical strength of field E of an plate capacitor	$E = \frac{U}{d}$	dielectric
capacitance C of an plate capacitor and	$\mathbf{C} = \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{\varepsilon}_r \cdot \frac{\mathbf{A}}{\mathbf{d}}$	Q charge U voltage d distance between the plates
zylindrical capacitor	$C = \frac{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r \cdot \ell}{\ell n \frac{r_a}{r_i}}$	ϵ_0 permittivity (vacuum) (p. 14) ϵ_r dielectric constant A area
energy E of the electric field (plate capacitor)	$E = \frac{1}{2}C\cdotU^2$	
charge of an capacitor	$U_{\mathbf{C}} = \mathbf{U} \cdot \left(1 - \mathbf{e}^{\left(-\frac{\mathbf{t}}{\mathbf{R} \cdot \mathbf{C}} \right)} \right)$	U _c capacitor-voltage U charging voltage R OHM's resistor
	$I = I_0 \cdot e^{\left(-\frac{t}{R \cdot C}\right)}$	t time I current intensity I_0 current intensity (t = 0)
discharge of an capacitor	$U_{\mathbf{C}} = \mathbf{U} \cdot \mathbf{e}^{\left(-\frac{\mathbf{t}}{\mathbf{R} \cdot \mathbf{C}}\right)}$	e EULER's number
	$I = I_0 \cdot e^{\left(-\frac{t}{R \cdot C}\right)}$	
time constant τ	$\tau = R \cdot C$	

Series connection of capacitors	Parallel connection of capacitors
$\begin{array}{c c} & U \\ \hline C_1 \\ \hline C_2 \\ \hline U_1 \\ \hline U_2 \end{array}$	
$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$	$C = C_1 + C_2 + + C_n$
$U = U_1 + U_2 + + U_n$	$U = U_1 = U_2 = \ldots = U_n$

6

Magnetic field

magnetic strength of field H	for the field outside of an direct conductor with the current I, apply to:	I current density r distance from conductor
magnetia flux density P	$H = \frac{I}{2\pi r}$ $H = \frac{I}{4\pi \cdot r} (\cos \alpha_1 - \cos \alpha_2)$ for the field inside of an long coil with the current I, apply to: $H = \frac{N \cdot I}{1}$ for homogeneous magnetic field, apply to: $H = \frac{\Theta}{s}$	N winding number of the coil 1 length of the coil
(magnetic induction)	$\mathbf{B} = \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \mathbf{\Pi}$	
permeability μ	$\mu = \mu_0 \cdot \mu_r$ for vacuum, apply to: $\mu_r = 1$	
magnetic flux Φ	$\Phi = \int \vec{B} d\vec{A}$ for $\vec{B} = \text{constant}$ and $\vec{B} \parallel \vec{A}$ apply to: $\Phi = B \cdot A$	$\Theta \text{ magnetomotive force} $ s circle of an area μ_0 permittivity (vacuum, p.14)
magnetic Voltage V	$V = \int_{P_1}^{P_2} \vec{H}(s) d\vec{s}$ under the condition of homogeneous field, apply to: $V = \vec{H} \cdot \vec{s}$	μ_r permeability A area \vec{B} \vec{A} \vec{A} \vec{A} \vec{A}
magnetic resistor R _m	$R_{m} = \frac{1}{\mu_{0} \cdot \mu_{r} \cdot A}$ $R_{m} = \frac{V}{\Phi}$	s distance 1 lenght
force of an moved electron F _L (LORENTZ's force)	$\vec{F}_{L} = Q \cdot \vec{v} \times \vec{B}$ under the condition $\vec{v} \perp \vec{B}$ apply to: $\vec{F}_{L} = Q \cdot v \cdot B$	A area Q charge v speed 1 length of the conductor
force F to a conductor with current I	$F = 1 \cdot I \times B$ under the condition $\vec{I} \perp \vec{B}$ apply to: $F = 1 \cdot I \cdot B$	+ •
energy E of the magneticfield of a coil with current I	$E = \frac{1}{2}L \cdot I^2$	L inductivity of the coil
I	I construction of the second se	1

Electromagnetic field

Induction law	$\begin{aligned} u_{iq} &= \frac{d\Phi}{dt} \\ \text{under the condition of steady change} \\ \text{of the magnetic field and } \vec{B} \perp \vec{A} \\ \text{for a coil, apply to:} \\ u_{iq} &= N \frac{\Delta (B \cdot A)}{\Delta t} \\ \text{for an moved conductor } \vec{v} \perp \vec{B} \text{ apply to:} \\ u_{iq} &= v \cdot B \cdot \ell \end{aligned}$	U _i induced voltage Φ magnetic flux N number of windings t time B magnetic flux density A area \vec{B}
self-induced voltage in a coil	$u = L \cdot \frac{dI}{dt}$ under the condition of steady change of the current, apply to: $u = L \cdot \frac{\Delta I}{\Delta t}$	v speed of the conductor l length of the conductor or the coil \vec{B} I current intensity
inductivity L of an coil	for an long coil, apply to: $L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A}{l}$	μ_0 permittivity (vacuum, p.14) μ_r permeability A area

Alternating current circuit

current density i in alternating current circuit	momentary value: $i = \hat{I} \cdot \sin(\omega \cdot t + \varphi_0)$ root-mean-square value: $I = \frac{1}{\sqrt{2}} \hat{i} \approx 0,7 \hat{i}$	 ω angular frequency i momentary value t time i peak value I root-mean-square value
voltage u in alternating current circuit	momentary value: $u = \hat{u} \cdot \cos(\omega t + \phi_0)$ root-mean-square value: $U = \frac{1}{\sqrt{2}}\hat{u} \approx 0,7\hat{u}$	
apparent power S	S = U·I	
effective power P	$P = U \cdot I \cdot \cos \varphi$	$\cos \phi$ power factor
reactive power Q	$Q = U \cdot I \cdot \sin \phi$	ψ lag angle

8

Resistors in alternating current circuit

OHM's resistor R R = $\frac{U}{I}$	resistance of inductivity X_L $X_L = \frac{U}{I}$	resistance of capacitor X_C $X_C = \frac{U}{I}$
for a metallic conductor under the condition ϑ = constant, apply to:	for a coil, apply to:	for a capacitor, apply to:
$R = \frac{\rho \cdot 1}{A}$	$X_{L} = \omega \cdot L$	$X_{C} = \frac{1}{\omega \cdot C}$
		u,i u,i i t

Transformation

voltage transformation for an transformer without losses	under the condition $I_2 \rightarrow 0$ (no-load), apply to: $\frac{U_1}{U_2} = \frac{N_1}{N_2}$	$A I_1 \qquad V \\ U_1 \qquad N_1 \qquad O O O O O O O O O O O O O O O O O O $
current transformation for an transformer without losses	under the condition $I_2 \rightarrow \infty$ (short), apply to: $\frac{I_1}{I_2} = \frac{N_2}{N_1}$	
transformation ratio ü	$\ddot{u} = \frac{N_1}{N_2}$	U voltage
power transformation	$\begin{split} P_1 &= P_2 + P_V \\ U_1 \cdot I_1 \cdot \cos \varphi_1 &= U_2 \cdot I_2 \cdot \cos \varphi_2 + P_V \\ \text{under the conditions of heavy load,} \\ \text{without losses and } \varphi_1 &= \varphi_2 \text{ apply to:} \\ U_1 \cdot I_1 &= U_2 \cdot I_2 \end{split}$	I current intensity N number of windings P power P_v power loss ϕ lag angle between current and voltage P power output
effectiveness η of an transformer	$\eta = \frac{P_{out}}{P_{in}}$	P_{out} power output P_{in} power input

Electromagnetic oscillation

THOMSON's oszillation law	$T=2\pi\cdot\sqrt{L\cdot C}$	T period L inductivity
frequency f of an electrical oscillating circuit (without attenuation)	under the condition of a free oscillation without attenuation (R=0), apply to: $f = \frac{1}{2\pi\sqrt{L \cdot C}}$	
natural frequency f of an electrical oscillating circuit (with attenuation)	under the condition of a free oscillation, apply to: $f = \frac{1}{2\pi} \sqrt{\frac{1}{L \cdot C} - \frac{R^2}{L^2}}$	R OHM's resistor L inductivity C capacity C R
damping coefficient δ	$\delta = \frac{R}{2L}$	$f \qquad natural frequency \\ f_e \qquad exciter frequency$
resonance condition	$f = f_e$	

Characteristics and units

characteristik	symbol	unit		Conversion between the units	
damping coefficient	δ	per second	s ⁻¹	1s ⁻¹	$= 60 \text{ min}^{-1}$
work	W, A	joule newtonmeter watt-second kilowatt-hour	$J \\ N \cdot m \\ W \cdot s \\ kW \cdot h$	1 J 1 kW ∙ h	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ W} \cdot \text{s}$ $= 3,6 \cdot 106 \text{ W} \cdot \text{s}$
illuminance	Е	lux	lx	1 lx	$= 1 \operatorname{lm} \cdot \operatorname{m}^{-2}$
acceleration	a, g	meter per square-second	$\mathbf{m} \cdot \mathbf{s}^{-2}$	$1 \text{ m} \cdot \text{s}^{-2}$	$= 1 \mathrm{N} \cdot \mathrm{kg}^{-1}$
reactive power	Q	voltampere reactive	VAr	1 VAr	= 1 var
density (of aggregate)	ρ	kilogramme per cubic meter gramme per cubic centimeter	$kg \cdot m^{-3}$ $g \cdot cm^{-3}$	$\frac{1 \text{ kg} \cdot \text{m}^{-3}}{1 \text{ g} \cdot \text{cm}^{-3}}$	$= 10^{-3} g \cdot cm^{-3}$ = 10 ³ kg \cdot m^{-3}
torque	М	newtonmeter	$N \cdot m$	$1 \text{ N} \cdot \text{m}$	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
speed (rate of revolutions)	n	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$
magnetomotive force	Θ	ampere	А		
breakdown strength	E _d	volt per meter	$V\cdot m^{\text{-}1}$		
energy	W	joule newtonmeter watt-second electron volt	$J \\ N \cdot m \\ W \cdot s \\ eV$	1 J 1 eV	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ W} \cdot \text{s}$ $= 1,602 \cdot 10^{-19} \text{ J}$
gravitational acceleration	g	meter per square-second	$\mathbf{m} \cdot \mathbf{s}^{-1}$	$1 \text{ m} \cdot \text{s}^{-1}$	$= 1 \mathrm{N} \cdot \mathrm{kg}^{-1}$
electrical field strength	Е	volt per meter	$V\cdot m^{\text{-}1}$	$1 \mathrm{V} \cdot \mathrm{m}^{-1}$	$= 1 \text{kg} \cdot \text{m} \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
electrical flux	Ψ	coulomb	C	1 C	$= 1 \mathbf{A} \cdot \mathbf{s}$
magnetical flux	φ	weber	Wb	1 Wb	$= 1 \text{ V} \cdot \text{s}$
magnetical flux density (magnetic induction)	В	tesla	Т	1 T	$= \overline{1 \text{ Wb} \cdot \text{m}^{-2}}$ = 1 V \cdots \cdots \cdots \cdots^{-2} = 1 N \cdot \mathbf{m}^{-1} \cdot \cdots^{-1}

characteristic	symbol	unit		Conversion between the units	
frequency	f	hertz	Hz	1 Hz	$= 1 s^{-1}$
speed (propagation speed)	v c	meter per second kilometer per hour hitch	m · s ^{−1} km · h ^{−1} kn	1 m · s ⁻¹ 1 km · h ⁻¹ 1 kn	= 3,6 km \cdot h ⁻¹ = 0,28 m \cdot s ⁻¹ = 1 sm \cdot h ⁻¹ = 1852 m \cdot h ⁻¹
inductivity	L	henry	Н	1 H	$= 1 \text{ Wb} \cdot \text{A}^{-1}$ $= 1 \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-2}$
capacity	C	farad	F	1 F	$= 1 \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{V}^{-1}$
force	F	newton	Ν	1 N	$= 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$ $= 1 \text{ J} \cdot \text{m}^{-1}$
		kilopond	kp	1 kp	= 9,81 N
angular frequency	ω	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$
electrical charge	Q	coulomb	С	1 C	$= 1 \mathbf{A} \cdot \mathbf{s}$
power	Р	watt	W	1 W	$= 1 J \cdot s \cdot 1$ = 1 V \cdot A = 1 kg \cdot m ² \cdot s ⁻³ = 1 N \cdot m \cdot s ⁻¹
power factor	cosφ		1		
electrical conductivity	γ	siemens per meter	$S \cdot m^{-1}$	$1 \text{ S} \cdot \text{m}^{-1}$	$= 1 \ \Omega^{-1} \cdot m^{-1}$ $= 10^{-6} \text{m} \cdot \Omega - 1 \cdot \text{mm}^{-2}$
electrical conductance	G	siemens	S	1 S	$=1 \ \Omega^{-1}$
light density	L	candela per square-meter	$cd \cdot m^{-2}$		
period (of oszillation)	Т	second	S	mentioned below (time)	
electical potential	φ	volt	V		
electrical voltage (potential difference)	U,u	volt	V	1 V	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
magnetic voltage	V	ampere	A	1 A	$= 1 J \cdot Wb^{-1}$

characteristic	symbol	unit		Convers units	sion between the
current	I, i	ampere	А	1 A	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
heat (heat quantity)	Q	joule	J	1 J	$= 1 \text{ N} \cdot \text{m}$ = 1 kg \cdot m ² \cdot s ⁻² =1 W \cdot s = 4 19 J
		kalone			
heat capacity	C _{th}	joule per kelvin	$J \cdot K^{-1}$		
heat conduction resistor	R _λ	kelvin per watt	$\mathbf{K}\cdot\mathbf{W}^{\text{-1}}$		
heat current	Φ_{th}	watt	W	1 W	$= 1 J \cdot s^{-1}$
OHM's resistor	R	ohm	Ω	1 Ω	$= 1 \mathbf{V} \cdot \mathbf{A}^{-1}$ $= 1 \mathbf{S}^{-1}$
resistance of inductivity	X_L	ohm	Ω	1 Ω	$= 1 \mathbf{V} \cdot \mathbf{A}^{-1}$
resistance of capacitor	X _C	ohm	Ω	1 Ω	$= 1 \mathrm{V} \cdot \mathrm{A}^{-1}$
magnetic resistor	R _m	per henry	H^{-1}	1 H ⁻¹	$= 1 \mathrm{A} \cdot \mathrm{Wb}^{-1}$
angle	α,β,	radiant	rad	1 rad	$=\frac{180^{\circ}}{\pi}\approx 57,296^{\circ}$
	γ,φ,σ	degree of angle	o	1°	$=\frac{\pi}{180} \text{rad} \approx 0,01745 \text{rad}$
angular acceleration	α	per squar-second	s ⁻²	1 s ⁻²	$= 3600 \cdot \min^{-2}$ $= 1 \text{ rad} \cdot \text{s}^{-2}$
angular speed	ω	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$ $= 1 \text{ rad} \cdot \text{s}^{-1}$
efficiency	η		1 or %		
time (span, term)	t	second minute hour day	s min h d	1 min 1 h 1 d	= 60 s = 60 min = 3600 s = 24 h = 1440 min = 86400 s
		year	a	1 a	= 365 d oder 366 d

Physical constants

Constant	symbol	value and unit
permittivity (vacuum)	03	8,854·10 ⁻¹² As/Vm
permeability (vacuum)	μο	1,257·10 ⁻⁶ Vs/Am
elementary charge	е	1,6021·10 ⁻¹⁹ C
speed of light (vacuum)	c ₀	2,99792·10 ⁸ m/s
electron mass (at rest)	m _e	9,109·10 ⁻³¹ kg
proton mass (at rest)	m _p	1,6725·10 ⁻²⁴ g
neutron mass (at rest)	m _n	1,6748·10 ⁻²⁴ g
Bolzmann constant	k	1,381·10 ⁻²³ J/K
Planck constant	h	6,626·10 ⁻³⁴ Js
gravitational constant	G	$6,673 \cdot 10^{-14} \text{ M}^3 / (\text{g} \cdot \text{s}^2)$
gravitational acceleration	g	9,80665 m/s ²
absolute zero of thermodynamical temperature	т _о	-273,15 °C
Loschmidt number	L	$6,023 \cdot 10^{23}$ molecules/mol