0. Vorbemerkungen

0.1 Zahlen

Natürliche Zahlen $\mathbb{N} = \{1, 2, 3, ...\}$

• Ganze Zahlen
$$\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$$

· Rationale Zahlen (Brüche)

$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Reelle Zahlen ℝ:

Die Gesamtheit aller endlichen oder unendlichen Dezimalbrüche (Veranschaulichung durch Zahlengerade).

0.2 Betrag einer reellen Zahl a

$$|a| = \begin{cases} a & \text{sofern } a \ge 0 \\ -a & \text{sofern } a < 0 \end{cases}$$

Bsp.: i) |-3|= ii) |3|= iii) |3-7|= iv) |-3||4|=

Rechenregeln: Für reelle Zahlen a, b gilt

i)
$$|a + b| \le |a| + |b|$$
 (Dreiecksungleichung)

ii)
$$|a \cdot b| = |a| \cdot |b|$$

0.3 Intervalle reeller Zahlen

•
$$a,b \in \mathbb{R} \text{ mit } a < b$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, \infty) = \{x \in \mathbb{R} : a < x\}$$

$$[a,\infty) = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\}$$
$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

$$(-\infty,\infty)=\mathbb{R}$$

1. Grundrechenoperationen

- · Addition, Subtraktion, Multiplikation, Division
- Division durch 0 ist nicht erlaubt
- "Punkt vor Strich"

Bsp.:
$$i) 6 \cdot 3 + 2 = ii) 6 + 3 \cdot 2 =$$

$$ii) 6 + 3 \cdot 2 =$$

1.1 Rechnen mit Klammern

1.1.1 Rechen"gesetze" für reelle Zahlen

$$(a+b)+c=a+(b+c);$$
 $(a \cdot b) \cdot c=a \cdot (b \cdot c)$ (Assoziativgesetz)

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a+b=b+a$$
;

$$a \cdot b = b \cdot a$$

(Kommutativgesetz)

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

(Distributivgesetz)

Bsp.:
$$-(a - b) = b - a$$

Bezeichnung: Statt $a \cdot b$ schreibt man auch kurz ab.

- "Erst Operationen in Klammern ausführen"
- "Bei geschachtelten Klammern innen beginnen"

Bsp.:
$$-(8 - (2 + 4)) =$$

Klammern "gliedweise ausmultiplizieren"

Bsp.:
$$(2a - b)(9a + 4b) =$$

Ausklammern (→ Kürzen von Brüchen)

Bsp.:
$$8ab + 20b^2 =$$

wiederholtes Ausklammern

$$Bsp.:4au + 8av - 2bu - 4aw - 4bv + 2bw =$$

1.2 Binomische Formeln

Binom: "Zweigliedriger" Ausdruck

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2 - b^2$$

Bsp.: *i*) $(a+b)^3 =$

$$(2a + 6v)(2a - 6v) =$$

iii)
$$4a^2 + 28ab + 49b^2 = (\Box + \nabla)^2$$
, $\Box = ?; \nabla = ?$

$$iv$$
) $(10n+5)^2 = 100n(n+1) + 25$

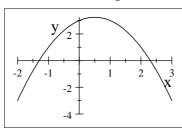
1.3 Quadratische Ergänzung

• Forme um:
$$ax^2 + bx + c = a(x + b')^2 + c'$$

 $b' = ?, c' = ?$

→ Anwendung: Scheitelpunktform eines quadratischen Polynoms

$$\underline{\mathsf{Bsp.}}:\mathsf{i}) - x^2 + x + 3 = -(x^2 - x - 3) = -(\underbrace{x^2 - x + \left(\frac{1}{2}\right)^2}_{(x - \frac{1}{2})^2} - \left(\frac{1}{2}\right)^2 - 3) = -(x - \frac{1}{2})^2 + \frac{13}{4}$$



$$-(x-\frac{1}{2})^2+\frac{13}{4}$$

ii) Scheitelpunktform von $x^2 + 4x + 3$

1.4 Bruchrechnen

•
$$\frac{a}{b}$$
 (Zähler a , Nenner b)

• Erweitern mit einer Zahl
$$c \neq 0$$
 $\rightarrow \frac{a}{b} = \frac{a \cdot c}{b \cdot c}$

1.4.1 Addition/Subtraktion

a) Gleichnamige Brüche (d.h. gleicher Nenner)

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}; \qquad \frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$$

Bsp.:
$$\frac{2a}{15b} - \frac{17a}{15b} =$$

b) Ungleichnamige Brüche

· Bildung eines gemeinsamen Hauptnenners

$$\underline{\mathsf{Bsp.:}} \; \mathsf{i}) \; \frac{3a-1}{4a-1} - \frac{3}{4} = \frac{(3a-1) \cdot 4}{(4a-1) \cdot 4} - \frac{3 \cdot (4a-1)}{4 \cdot (4a-1)} = \qquad (a \neq \frac{1}{4})$$

3

ii)
$$\frac{b+5c-a}{6} - \frac{3a+6c-7b}{4} + \frac{4a+7c-5b}{3} =$$

Anmerkung: Hauptnenner 6 · 4 · 3 möglich, aber umständlich.

Besser: Verwende als Hauptnenner das kleinste gemeinsame Vielfache (kgV) der Nenner.

- Das kgV von gegebenen Zahlen ist die kleinste Zahl, die durch alle gegebenen Zahlen teilbar ist
- Berechnung kgV: "Produkt aller auftretenden Primfaktoren mit der höchsten vorkommenden Potenz"

Bsp.
$$4 = 2^{1} \cdot 3^{1}$$

$$3 = 3^{1}$$

$$kgV(6;4;3) = 2^{2} \cdot 3^{1} = 12$$

<u>Anmerkung</u>: Begriff und Berechnung des kgV lassen sich analog auch auf algebraische Ausdrücke anwenden.

Bsp.: iii)
$$\frac{a+2b}{3a^2-3ab} - \frac{1}{2b} - \frac{3b-a}{2ab-2b^2} =$$

$$3a^{2} - 3ab = 3a(a - b)$$

$$2b$$

$$2ab - 2b^{2} =$$

$$\begin{cases} "kgV" (3a^{2} - 3ab; 2b; 2ab - 2b^{2}) = \dots \end{cases}$$

1.4.2 Multiplikation/Division

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
 $\left(\frac{\text{"Z\"{a}hler-Z\"{a}hler"}}{\text{"Nenner-Nenner"}}\right)$

Doppelbruch: "Zähler mit dem Kehrwert des Nenners multiplizieren"

4

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Bsp.: i)
$$\frac{2}{3} \cdot \frac{4}{7} =$$
ii) $\frac{2}{3} : \frac{4}{7} =$
iii) $\frac{2}{3} =$

• Für $a \neq 0$ heißt $\frac{1}{a}$ Kehrwert von a

Bsp.: Kehrwert von
$$-\frac{2}{3}$$
 =

Kürzen (Ausklammern von gemeinsamen Faktoren aus Zähler und Nenner)

Anmerkung: Ein Bruch lässt sich immer durch den größten gemeinsamen Teiler (ggT) von Nenner und Zähler kürzen.

- Der ggT von gegebenen Zahlen ist die größte Zahl, durch die alle gegebenen Zahlen teilbar sind.
- Berechnung ggT: "Kürze sukzessive Primfaktoren, die in allen gegebenen Zahlen vorkommen, bis es keine gemeinsamen Primfaktoren mehr gibt"

Bsp.:i)
$$6 = 2^{1} \cdot 3^{1}$$
 $9 = 3^{2}$
 $21 = 3^{1} \cdot 7^{1}$
 $ggT(6; 9; 21) = 3$

<u>Anmerkung</u>: Begriff und Berechnung des ggT lassen sich analog auch auf algebraische Ausdrücke anwenden.

ii)
$$\frac{4a^2 - 9b^2}{21a^2b + 14a^3} \cdot \frac{7a + 5ab}{6b - 4a} =$$
Nebenrechnung:
$$\frac{(4a^2 - 9b^2)(7a + 5ab) = (2a - 3b)(2a + 3b) \cdot a \cdot (7 + 5b)}{(21a^2b + 14a^3)(6b - 4a) = 7a^2(3b + 2a) \cdot 2 \cdot (3b - 2a)}$$
ii)
$$\left(1 - \frac{2}{a} + \frac{1}{a^2}\right) : \left(\frac{1 - a^2}{a^2}\right) =$$

1.4.3 Partialdivision, speziell Polynomdivision

• Gegeben: $a_0, a_1, \dots, a_n \in \mathbb{R}; a_n \neq 0$

Die Funktion $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ heißt Polynom vom Grad n.

Bsp.: i)
$$4x^3 - 3x - 1$$
 Polynom vom Grad 3
ii) $x - 1$ Polynom vom Grad 1
iii) 4 Polynom vom Grad 0

<u>Gegeben</u>: Eine rationale Funktion $r(x) = \frac{p(x)}{q(x)}$,

wobei p(x) ein Polynom vom Grad n und q(x) ein Polynom vom Grad m mit $m \le n$ ist.

Ziel: "Vereinfache" r(x)

Durch Polynomdivision erreicht man die Darstellung:

$$r(x) = s(x) + \frac{R(x)}{q(x)}$$

wobei s(x) ein Polynom vom Grad n-m und R(x) ein Polynom mit einem Grad < m ist.

Die Polynomdivision erfolgt in 3 Schritten:

- 1. Teile den Summanden höchsten Grades des Zählers durch den Summanden höchsten Grades des Nenners
- 2. Multipliziere das Ergebnis aus 1. mit dem Nenner q(x) und
- 3. Subtrahiere das Ergebnis aus 2. vom Zähler und
- → 4. erhalte damit den neuen Zähler

Dieses Vorgehen wird solange wiederholt, bis der Grad des neuen Zählers kleiner als der Grad des Nenners m ist.

Bsp.:
$$(4x^3 - 2x^2 - 1) : (2x^2 - 1) = \underbrace{2x - 1}_{2x^2 - 1} + \underbrace{\frac{2x - 2}{2x^2 - 1}}_{1. \quad 1.$$

 $4. \rightarrow \underbrace{-(4x^3 - 2x)}_{2x^2 + 2x - 1}$
 $2./3. \rightarrow \underbrace{-(-2x^2 + 1)}_{2x - 2}$

Wir erhalten:
$$\frac{4x^3 - 2x^2 - 1}{2x^2 - 1} = 2x - 1 + \frac{2x - 2}{2x^2 - 1}$$
 bzw.

$$4x^3 - 2x^2 - 1 = (2x - 1)(2x^2 - 1) + 2x - 2$$

Anwendung: "Abspalten von Nullstellen"

• Aufgabe: Bestimme alle Nullstellen von $4x^3 - 3x - 1$

Durch Raten sieht man, dass 1 eine Nullstelle dieses Polynoms ist, da $4 \cdot 1^3 - 3 \cdot 1 - 1 = 0$

• Dividiere nun
$$4x^3 - 3x - 1$$
 durch den Linearfaktor " x –Nullstelle" (hier $x - 1$) $(4x^3 - 3x - 1)$: $(x - 1) = 4x^2 + 4x + 1$

und erhalte damit:
$$4x^3 - 3x - 1 = (x - 1)(4x^2 + 4x + 1)$$

Die Nullstellen von $4x^2 + 4x + 1$ sind dann ebenfalls Nullstellen von $4x^3 - 3x - 1$ Im Bsp.: $4x^2 + 4x + 1 = (2x + 1)^2$ und damit ist $-\frac{1}{2}$ eine weitere Nullstelle (mit Vielfachheit 2).

6

<u>Bsp.</u>: Bestimme alle (reellen) Nullstellen von $x^3 - 2x^2 + x - 2$

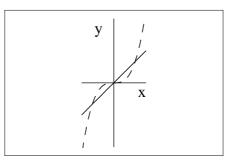
2. Potenzen (Wurzeln)

• a^n (Basis a, Exponent n)

Bsp.:
$$3^2 = ;-3^2 = ;(-3)^2 = ;(-3)^3 =$$

2.2 Die Potenzfunktionen x^n $(n \in \mathbb{N})$

a) x^n , n ungerade



 x, x^3 (gestrichelt)

Eigenschaften:

- Definitionsbereich: $(-\infty; \infty)$ • Wertebereich: $(-\infty; \infty)$
- Monotonie: streng monoton wachsend
- Symmetrie: ungerade (punktsymmetrisch zum Ursprung)
- Krümmung: konkav (rechtsgekrümmt) auf $(-\infty; 0]$, konvex (linksgekrümmt) auf $[0; \infty)$
- Wendepunkt: x = 0

b) x^n , n gerade

y | |

 x^2 ; x^4 (gestrichelt)

Eigenschaften:

• Definitionsbereich: $(-\infty, \infty)$ • Wertebereich: $[0, \infty)$

• Monotonie: streng monoton wachsend auf $[0, \infty)$, streng monoton fallend auf $(-\infty, 0]$

• Symmetrie: gerade (achsensymmetrisch zur y-Achse)

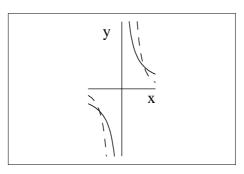
Krümmung: konvex

$$\underline{2.3 \text{ Def.}}: \qquad a^{-n} = \frac{1}{a^n} \qquad (a \in \mathbb{R}; a \neq 0; n \in \mathbb{N})$$

Bsp.:
$$3^{-2} = ; -3^{-2} = ; (-3)^{-2} = ; 0.5^{-2} =$$

2.4 Die Funktionen x^{-n} $(n \in \mathbb{N})$

a) x^{-n} , n ungerade



 x^{-1} ; x^{-3} (gestrichelt)

Eigenschaften:

• Definitionsbereich: $\mathbb{R} \setminus \{0\} = \{x \in \mathbb{R} : x \neq 0\}$

• Wertebereich: $\{x \in \mathbb{R} : x \neq 0\}$

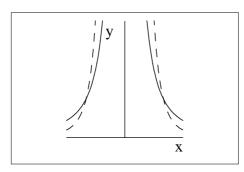
• Monotonie: streng monoton fallend auf $(0, \infty)$ und auf $(-\infty, 0)$

Symmetrie: ungerade

• Krümmung: konvex auf $(0, \infty)$, konkav auf $(-\infty, 0)$

• Grenzwerte: $\lim_{x\to\pm\infty}x^{-n}=0;$ $\lim_{x\to 0+0}x^{-n}=\infty;$ $\lim_{x\to 0-0}x^{-n}=-\infty$

b) x^{-n} , n gerade



 x^{-2} ; x^{-4} (gestrichelt)

Eigenschaften:

• Definitionsbereich: $\mathbb{R} \setminus \{0\} = \{x \in \mathbb{R} : x \neq 0\}$

• Wertebereich: $(0, \infty)$

• Monotonie: streng monoton fallend auf (0; ∞),

streng monoton wachsend auf $(-\infty;0)$

Symmetrie: gerade

• Krümmung: konvex auf $(0, \infty)$ und auf $(-\infty, 0)$

• Grenzwerte: $\lim_{x \to \pm \infty} x^{-n} = 0$; $\lim_{x \to 0+0} x^{-n} = \lim_{x \to 0-0} x^{-n} = \infty$

2.5 Wurzeln

• Die Gleichung $x^n = a$ ($a \ge 0; n \in \mathbb{N}$) lässt sich eindeutig nach x auflösen.

• Diese Lösung bezeichnet man mit $a^{\frac{1}{n}}$ bzw. $\sqrt[n]{a}$

• Es gilt also: $\left(a^{\frac{1}{n}}\right)^n = \left(\sqrt[n]{a}\right)^n = a$

• Speziell: $\sqrt{a} = a^{\frac{1}{2}} = \sqrt[3]{a}$ (Quadratwurzel)

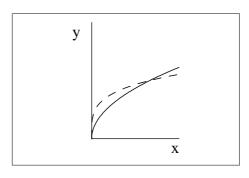
Bsp.: i)
$$\sqrt[4]{16} =$$
 ii) $\sqrt[3]{\frac{1}{8}} =$

<u>Achtung:</u> i) Ist n gerade, dann ist $\sqrt[n]{a}$ für a < 0 (als reelle Zahl) nicht erklärt! ii) Ist n ungerade, dann ist $\sqrt[n]{a}$ für a < 0 durch die eindeutige Lösung der Gleichung $x^n = a$ erklärt!

Bsp.:
$$\sqrt[3]{-8}$$
 =

2.6 Die Wurzelfunktionen $\sqrt[n]{x}$ $(n \in \mathbb{N})$

a) $\sqrt[n]{x}$, n gerade



 \sqrt{x} ; $\sqrt[4]{x}$ (gestrichelt)

Eigenschaften:

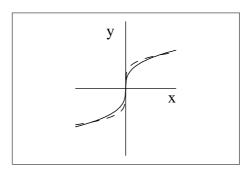
• Definitionsbereich: $[0, \infty)$ • Wertebereich: $[0, \infty)$

Monotonie: streng monoton wachsend

Krümmung: konkav

• Grenzwerte: $\lim_{x\to\infty} \sqrt[n]{x} = \infty$

b) $\sqrt[n]{x}$, n ungerade



 $\sqrt[3]{x}$; $\sqrt[5]{x}$ (gestrichelt)

Eigenschaften:

- Definitionsbereich: $(-\infty; \infty)$ • Wertebereich: $(-\infty; \infty)$
- Monotonie: streng monoton wachsend
- Krümmung: konkav auf $[0,\infty)$, konvex auf $(-\infty;0]$
- Grenzwerte: $\lim_{x\to\infty} \sqrt[y]{x} = \infty$; $\lim_{x\to-\infty} \sqrt[y]{x} = -\infty$

$$\underline{2.7 \text{ Def.: } a > 0; \frac{n}{m} \in \mathbb{Q}}$$

$$\cdot \quad a^{\frac{n}{m}} = (a^n)^{\frac{1}{m}}$$

$$\underline{\mathsf{Bem.}}: (a^n)^{\frac{1}{m}} = \left(a^{\frac{1}{m}}\right)^n$$

Bsp.: i)
$$(4)^{\frac{5}{2}} =$$
 ii) $(\frac{1}{8})^{\frac{2}{3}} =$

- 2.8 Bem: Für a > 0; $b \in \mathbb{R}$ lässt sich a^b durch einen Grenzwert definieren.
- 2.9 Rechenregeln: $(a, b > 0; n, m \in \mathbb{R})$

$$\boxed{\mathbf{i)}\ a^n a^m = a^{n+m}}$$

$$ii) a^n b^n = (ab)^n$$

$$i) (a^n)^m = a^{nm}$$

Anmerkung: Verwende beim Rechnen mit Wurzeln die Exponentialschreibweise!

i)
$$\sqrt[n]{a^b} \sqrt[m]{a^c} = a^{\frac{b}{n}} a^{\frac{c}{m}} = a^{\frac{b}{n} + \frac{c}{m}}$$

Bsp.:
$$\sqrt{a} \sqrt[3]{a^5} =$$

ii)
$$\sqrt[n]{a} \sqrt[n]{b} = a^{\frac{1}{n}} b^{\frac{1}{n}} = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

Bsp.: i)
$$\sqrt{a^3} \sqrt{a^5} =$$

ii)
$$\sqrt{3} \sqrt{\frac{4}{3}} =$$

Achtung:
$$\sqrt{a^2} = |a|$$

$$Bsp.: \sqrt{a^4} =$$

Achtung: Im Allgemeinen gilt **nicht** $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ (Setze z.B. a = b = 2)

Weitere Bsp.: i) $a \in \mathbb{R}, n \in \mathbb{N}$

$$(-a)^n = \begin{cases} a^n & \text{sofern } n \text{ gerade} \\ -a^n & \text{sofern } n \text{ ungerade} \end{cases}$$

ii)
$$a, b > 0$$

Vereinfache
$$\sqrt{\sqrt[3]{a^6b^8}}$$
 =

iii)
$$a,b > 0$$
; $x,y,z \in \mathbb{R}$

iii)
$$a,b > 0$$
; $x,y,z \in \mathbb{R}$

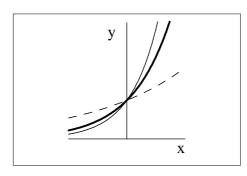
$$\frac{a^{5x-2y}}{b^{6z-1}} : \frac{a^{4x+y}}{b^{z-2}} =$$

3. Exponentialfunktion, Logarithmus

3.1 Exponentialfunktionen a^x , a > 0

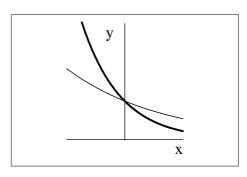
Anmerkung:
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.718...$$

Fall 1: a > 1



 e^x (dick); 1.5 x (gestrichelt); 4^x

Fall 2: 1 > a > 0



 $e^{-x} = (\frac{1}{e})^x (\text{dick}) ; 1.5^{-x}$

Eigenschaften: a > 0

• Definitionsbereich: $(-\infty, \infty)$ • Wertebereich: $(0, \infty)$

• Monotonie: streng monoton wachsend für a > 1

streng monoton fallend für a < 1

Krümmung: konvex;

• Grenzwerte: $\lim_{x \to -\infty} a^x = 0$; $\lim_{x \to \infty} a^x = \infty$ für a > 1 $\lim_{x \to \infty} a^x = \infty$; $\lim_{x \to \infty} a^x = 0$ für a < 1

• Funktionalgleichung. $a^x \cdot a^z = a^{x+z}$

3.2. Logarithmen

Für $a,b > 0, a \ne 1$ bezeichnet $\log_a b$ die eindeutig bestimmte Lösung der Gleichung $a^x = b$.

Bsp.: i)
$$\log_4 16 =$$
 ii) $\log_2 \frac{1}{8} =$ iii) $\log_5 \sqrt[3]{5} =$

Anmerkung:
$$\log_a 1 = 0; \qquad \log_a a = 1$$

Besondere Logarithmen:

i) a = e ; $\log_e b = \ln b$ (natürlicher Logarithmus)

ii) a = 10 ; $\log_{10}b = \lg b$ (dekadischer Logarithmus)

Rechenregeln: $(u, v > 0, a \neq 1, a > 0)$

$$i) \log_a uv = \log_a u + \log_a v$$

ii)
$$\log_a \frac{u}{v} = \log_a u - \log_a v$$

iii)
$$\log_a u^r = r \log_a u$$
 ; $r \in \mathbb{R}$

Bsp.: i) $\lg 1000 = \lg 10^3 =$ ii) $\lg 0.01 =$

iii)
$$1g2 + 1g5 =$$

iv)
$$\frac{1}{2} \ln e^2 =$$

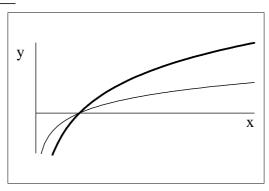
Anmerkung: **Keine** Regeln für $\log_a(u+v)$; $\log_a(u-v)$!!

Umrechnen von Logarithmen

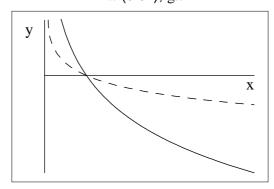
$$\log_a b = \frac{\log_c b}{\log_c a}, \text{ insbesondere}$$

$$\log_a b = \frac{\ln b}{\ln a}$$

3.3 Logarithmusfunktionen



ln x (dick);lg x



 $\log_{0.1} x$ (gestrichelt); $\log_{0.5} x$

Eigenschaften:

Definitionsbereich: $(0;\infty)$ Wertebereich: $(-\infty,\infty)$

Monotonie: streng monoton wachsend für a > 1, streng monoton fallend für 1>a>0

konkav für a > 1, konvex für a < 1Krümmung:

 $\lim_{x\to\infty}\log_a x=\infty \text{ sofern }a>1$ Grenzwerte: $\lim_{a \to \infty} \log_a x = -\infty;$

x→0+0

 $\lim \log_a x = -\infty \text{ sofern } 1 > a > 0$ $\lim \log_a x = \infty;$ *x*→0+0

Wichtig: $\log_a x$ und a^x sind Umkehrfunktionen, d.h

$$a^{\log_a x} = x$$
 sowie $\log_a a^x = x$ insbesondere

$$\ln e^x = x$$
 sowie $e^{\ln x} = x$

3.4 Logarithmische Gleichungen, Exponentialgleichungen

•
$$a^x = y$$
 a, y bekannt, x gesucht

Strategie: Gleichung logarithmieren

$$\rightarrow \ln a^{\mathbf{x}} = \ln y$$

$$\rightarrow$$
 $\mathbf{x} \ln a = \ln y$

$$\rightarrow \qquad \mathbf{x} = \frac{\ln y}{\ln a} = \log_a y$$

•
$$\log_a \mathbf{x} = y$$
 a, y bekannt, \mathbf{x} gesucht

Strategie: Exponentialfunktion anwenden

$$\rightarrow \log_a \mathbf{x} = \mathbf{y}$$

$$\rightarrow a^{\log_a \mathbf{x}} = a^{\mathbf{y}}$$

$$\rightarrow$$
 x = a^y

•
$$\log_{\mathbf{x}} a = y$$
 a, y bekannt, \mathbf{x} gesucht

$$\rightarrow \log_{\mathbf{x}} a = \frac{\ln a}{\ln x} = y$$

$$\rightarrow \qquad \ln \mathbf{x} = \frac{\ln a}{y} = \ln a^{\frac{1}{y}}$$

$$\rightarrow$$
 $\mathbf{x} = a^{\frac{1}{y}}$

Bsp.: Berechnen Sie x (sofern möglich)

$$i) 2^x = 10 \rightarrow x =$$

ii)
$$4 - 3\lg(2x) = 10$$
 \to $x =$

iii)
$$ln(3-x^2) = ln(x-2)$$
 \rightarrow $x =$

iv)
$$\lg(152 + x^3) = 3\lg(x+2)$$
 \rightarrow $x =$

$$v) e^{\frac{1}{x}} = 2 \qquad \rightarrow \qquad x =$$

4. Gleichungen

4.1. Lineare Gleichungen mit einer Unbekannten

$$\boxed{ax + b = 0} (*) \qquad a \neq 0 \qquad \rightarrow \qquad \boxed{x = \frac{-b}{a}}$$

Bsp.:Manchmal ergibt sich die Form (*) erst nach Umformungen.

i)
$$-3x - 2(2x + 1) = 4x - 13$$
 $\rightarrow x =$
ii) $\frac{\frac{2}{a} - \frac{2}{x}}{\frac{3}{x}} = 2$ $(a \neq 0, x \neq 0)$ $\rightarrow x =$
iii) $\frac{8x + 7}{9x^2 - 4} = \frac{18}{15x - 10}$ $(x \neq \pm \frac{2}{3})$ $\rightarrow x =$

Probe durchführen!

4.2 Quadratische Gleichungen

$$\boxed{ax^2 + bx + c = 0} \qquad a \neq 0 \qquad \rightarrow \qquad \boxed{x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}$$

bzw.

$$x^{2} + px + q = 0$$
 \rightarrow $x_{1,2} = \frac{-p \pm \sqrt{p^{2} - 4q}}{2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$

Bemerkung: i) Keine (reelle) Lösung sofern $p^2 - 4q < 0$.

- ii) Eine reelle Lösung (Vielfachheit 2) sofern $p^2 4q = 0$
- iii) Zwei verschiedene reelle Lösungen sofern $p^2 4q > 0$

Satz von Vieta: Für die Lösungen x_1, x_2 gilt:

$$i) x_1 + x_2 = -p$$

ii)
$$x_1 \cdot x_2 = q$$

<u>Bsp.</u>:Häufiger Fehler: Lösungen werden "wegdividiert".

i)
$$x^2 + ax = 0$$
, $x = ?$

Manchmal ergibt sich erst nach Umformungen eine quadratische Gleichung.

ii)
$$\frac{8-x}{2} - \frac{2x-11}{x-3} = \frac{x-2}{6}$$
 $(x \neq 3)$
iii) $\frac{1}{x-1} + \frac{1}{x+1} = \frac{2}{x^2-1} + 1$ $(x \neq \pm 1)$

iv)
$$(x-1)^3 = x^2 - 1$$

Probe durchführen!

Biquadratische Gleichungen

Bsp.:
$$x^4 - 13x^2 + 36 = 0$$

Substitution
$$z = x^2$$

4.3 Wurzelgleichungen

Lösungsstrategie: Durch Quadrieren Wurzeln "beseitigen"

<u>Achtung</u>: Probe erforderlich, da durch das Quadrieren möglicherweise die Lösungsmenge verändert wird!

Bsp.: i)
$$\sqrt{x} - 6 = 2$$
 $(x \ge 0)$

ii)
$$\sqrt{x} + 6 = 2$$
 $(x \ge 0)$

Eventuell mehrfaches Quadrieren erforderlich!

iii)
$$\sqrt{2x+10} - \sqrt{4x-8} = 2$$
 $(x \ge 2)$

4.4 Lineare Gleichungssysteme (2 Gleichungen, 2 Unbekannte)

 $\underline{\text{L\"osungsstrategien}} : \textbf{Einsetzmethode}, \textbf{Eliminationsmethode}$

Bsp.:

$$I. \quad 2x \quad -y \quad = 1$$

$$II. \quad 4x \quad +2y \quad = 0$$

5. Geometrie

5.1 Strahlensatz

5.2. Dreiecke

- Winkelsumme: $\alpha + \beta + \gamma = 180^{\circ}$
- Dreiecksungleichungen: a < b+c bzw. b < a+c bzw. c < a+b sowie: |b-c| < a bzw. |b-a| < c bzw. |c-a| < b

Bsp.: i) Ein Dreieck hat die Seitenlängen a=2 cm und b=0.1 cm. Geben Sie eine Abschätzung für die Länge der dritten Seite c.

16

ii) Gibt es ein Dreieck mit folgenden Seitenlängen?

a)
$$a = 4.1$$
 cm; $b = 5.3$ cm; $c = 9.6$ cm

b)
$$a = 3$$
 cm; $b = 2.5$ cm; $c = 1.5$ cm

5.2.1 Spezielle Dreiecke

- Gleichschenkliges Dreieck (2 gleiche Seiten bzw. 2 gleiche Winkel)
- Gleichseitiges Dreieck (3 gleiche Seiten bzw. $\alpha = \beta = \gamma = 60^{\circ}$)
- Rechtwinkliges Dreieck (Ein Winkel gleich 90°, Hypotenuse liegt gegenüber dem rechten Winkel, die beiden restlichen Seiten heißen Katheten)

5.2.2 Fläche eines Dreiecks

- Höhe h_c : Lot vom Eckpunkt C auf die durch A und B bestimmte Gerade.
- Fläche Dreieck = $\frac{ch_c}{2} = \frac{ah_a}{2} = \frac{bh_b}{2}$

Spezialfall: Fläche rechtwinkliges Dreieck = $\frac{1}{2}$ •Produkt der beiden Katheten

Formel von Heron: Mit $s = \frac{a+b+c}{2}$ ergibt sich die Fläche eines allgemeinen Dreiecks durch $\sqrt{s(s-a)(s-b)(s-c)}$

Bsp.: i) Berechnen Sie die Fläche aus Bsp. ii)b) oben.

ii) Berechnen Sie die Fläche eines gleichseitigen Dreiecks mit Seitenlänge a.

5.2.3 Satz von Pythagoras

Die Summe der beiden Kathetenquadrate entspricht dem Quadrat der Hypotenuse.

<u>Bsp.</u>:Der Querschnitt eines Tunnels ist ein Halbkreis mit Durchmesser 6 m. Am linken und am rechten Rand sind Gehsteige der Breite 1 m abgetrennt. Wie hoch darf ein Fahrzeug höchstens sein, damit es den Tunnel gefahrlos passieren kann?

5.3 Winkelfunktionen

5.3.1 Winkel

mathematisch positiver Sinn: Gegen den Uhrzeigersinn.

Winkelmessung im

- Gradmaß (DEG), Vollwinkel 360° oder
- Bogenmaß (RAD), Vollwinkel 2π

Umrechnung:

- Gradmaß in Bogenmaß: α° entspricht $\frac{\alpha}{180}\pi$
- Bogenmaß in Gradmaß: x entspricht $\frac{x}{\pi}180^{\circ}$

Bsp.: Rechnen Sie um

iii)
$$120^{\circ}$$
 iv) $\frac{\pi}{12}$ v) $\frac{\pi}{3}$

5.3.2 Definition von $\sin \alpha$, $\cos \alpha$ am Einheitskreis

Es lassen sich zahlreiche Werte der Winkelfunktionen sowie Formeln ableiten.

Für jeden Winkel α gilt:

- $\sin(\alpha + 2\pi) = \sin \alpha \text{ und } \cos(\alpha + 2\pi) = \cos \alpha$
- $\sin^2\alpha + \cos^2\alpha = 1$
- $\sin(-\alpha) = -\sin\alpha \text{ und } \cos(-\alpha) = \cos\alpha$
- $\sin(\pi + \alpha) = -\sin\alpha \text{ und } \cos(\pi + \alpha) = -\cos\alpha$

5.3.3 $\sin \alpha$, $\cos \alpha$ am rechtwinkligen Dreieck

- $\sin \alpha = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \rightarrow \text{Gegenkathete} = \sin \alpha \cdot \text{Hypotenuse}$ $\cos \alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}} \rightarrow \text{Ankathete} = \cos \alpha \cdot \text{Hypotenuse}$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \text{ und } \cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

5.3.4 Sinus- und Cosinussatz im allgemeinen Dreieck

Sinussatz:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

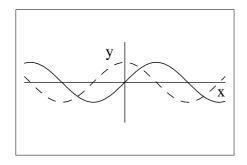
Bem.: Sollen mit Hilfe des Sinussatzes Winkel im Dreieck berechnet werden, muss darauf geachtet werden, dass es im Intervall [0°; 180°] im Allgemeinen zwei verschiedene Winkel mit demselben Sinuswert gibt.

18

Cosinussatz:
$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$
 bzw. $b^2 = a^2 + c^2 - 2ac\cos\beta$ bzw. $c^2 = a^2 + b^2 - 2ab\cos\gamma$

Bsp.: Gegeben ist ein Dreieck mit
$$\alpha = 30^{\circ}$$
, $\beta = 20^{\circ}$ und $c = 2$ $\gamma = ?$, $a = ?b = ?$

5.3.5 Die Funktionen $\sin x$, $\cos x$



 $\sin x, \cos x$ (gestrichelt)

Eigenschaften:

Definitionsbereich: $(-\infty;\infty)$ Wertebereich: [-1, 1]

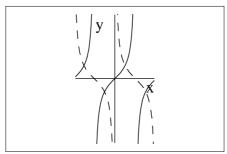
Periode:

Symmetrie: $\sin x$ ungerade, $\cos x$ gerade Nullstellen:

 $\{0, \pi, -\pi, 2\pi, -2\pi, \dots\}$ $(\sin x)$ $\{\frac{\pi}{2}, -\frac{\pi}{2}, \frac{3\pi}{2}, -\frac{3\pi}{2}, \dots\}$ $(\cos x)$

5.3.6 Die Funktionen tan x, cot x

 $\tan x = \frac{\sin x}{\cos x}; \qquad \cot x = \frac{\cos x}{\sin x} =$



tan x, cot x (gestrichelt)

Eigenschaften:

 $\mathbb{R}\setminus\{\frac{\pi}{2},-\frac{\pi}{2},\frac{3\pi}{2},-\frac{3\pi}{2},\ldots\} \qquad (\tan x)$ Definitionsbereich:

 $\mathbb{R} \setminus \{0, \pi, -\pi, 2\pi, -2\pi, \dots\}$ (cot x)

Wertebereich: $(-\infty,\infty)$

Periode:

Symmetrie: ungerade

Nullstellen:

 $\{0, \pi, -\pi, 2\pi, -2\pi, \dots\}$ $\{\tan x\}$ $\{\frac{\pi}{2}, -\frac{\pi}{2}, \frac{3\pi}{2}, -\frac{3\pi}{2}, \dots\}$ $\{\cot x\}$

5.3.7 $\tan \alpha$, $\cot \alpha$ am rechtwinkligen Dreieck

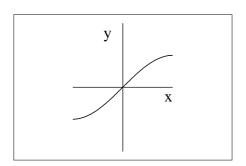
•
$$\tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$

•
$$\cot \alpha = \frac{\text{Ankathete}}{\text{Gegenkathete}}$$

5.3.8 Weitere Gleichungen aus der Formelsammlung

- $\sin(x+y) = \sin x \cos y + \sin y \cos x$
- $\cos(x+y) = \cos x \cos y \sin x \sin y$

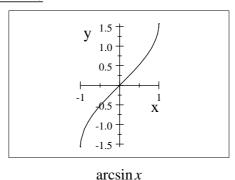
5.3.9 Die Umkehrfunktionen der Winkelfunktionen



 $\sin x$ auf $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

Die Gleichung $\sin x = b \ (-1 \le b \le 1)$ hat auf dem Intervall $[-\frac{\pi}{2}; \frac{\pi}{2}]$ eine eindeutig bestimmte Lösung die wir mit $\arcsin b$ (TR $\sin^{-1}b$) bezeichnen.

Die Funktion Arkussinus (arcsin x)



Eigenschaften:

 $\begin{bmatrix} -1;1 \end{bmatrix} \begin{bmatrix} -\frac{\pi}{2}; \frac{\pi}{2} \end{bmatrix}$ Definitionsbereich: Wertebereich:

Monotonie: streng monoton wachsend

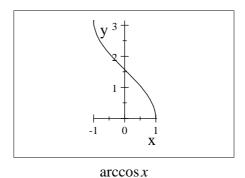
Symmetrie: ungerade

Krümmung: konkav auf [-1;0], konvex auf [0;1]

Wendepunkt: x = 0Nullstelle: x = 0

Die Funktion Arkuscosinus (arccos x)

Die Gleichung $\cos x = b \ (-1 \le b \le 1)$ hat auf dem Intervall $[0; \pi]$ eine eindeutig bestimmte Lösung die wir mit $\arccos b \ (\mathsf{TR} \ \cos^{-1} b)$ bezeichnen.



Eigenschaften:

• Definitionsbereich: [-1;1]• Wertebereich: $[0;\pi]$

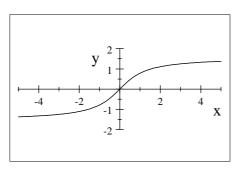
Monotonie: streng monoton fallend

• Krümmung: konvex auf [-1;0], konkav auf [0;1]

• Wendepunkt: x = 0• Nullstelle: x = 1

Die Funktion Arkustangens (arctan x)

Die Gleichung $\tan x = b$ ($b \in \mathbb{R}$) hat auf dem Intervall $(-\frac{\pi}{2}; \frac{\pi}{2})$ eine eindeutig bestimmte Lösung die wir mit $\arctan b$ (TR $\tan^{-1} b$) bezeichnen.



arctan x

Eigenschaften:

• Definitionsbereich: $(-\infty; \infty)$ • Wertebereich: $(-\frac{\pi}{2}; \frac{\pi}{2})$

Monotonie: streng monoton wachsend

Symmetrie: ungerade

• Krümmung: konvex auf $(-\infty; 0]$, konkav auf $[0; \infty)$

• Wendepunkt: x = 0

Nullstelle:

$$x = 0$$

- Grenzwerte: $\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$; $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$

Bemerkung: Es gilt ("Funktion und Umkehrfunktion heben sich in ihrer Wirkung auf")

- $\overline{\sin(\arcsin x)} = x \text{ für } x \in [-1; 1] \text{ sowie } \arcsin(\sin x) = x \text{ für } x \in [-\frac{\pi}{2}; \frac{\pi}{2}]$
- $cos(arccos x) = x \text{ für } x \in [-1; 1] \text{ sowie } arccos(cos x) = x \text{ für } x \in [0; \pi]$
- $tan(arctan x) = x \text{ für } x \in \mathbb{R} \text{ sowie } arctan(tan x) = x \text{ für } x \in (-\frac{\pi}{2}; \frac{\pi}{2})$

5.3.10 Gleichungen mit Winkelfunktionen

a) Bestimme alle Lösungen der Gleichung $\sin x = b \ (-1 \le b \le 1)$

Lösung:
$$x_1 = \arcsin(b)$$
; $x_2 = \pi - x_1$

Gesamte Lösungsmenge: $\{x_1, x_1 \pm 2\pi; x_1 \pm 4\pi, ...\} \cup \{x_2, x_2 \pm 2\pi; x_2 \pm 4\pi, ...\}$

b) Bestimme alle Lösungen der Gleichung $\cos x = b \ (-1 \le b \le 1)$

Lösung:
$$x_1 = \arccos(b)$$
; $x_2 = -x_1$

Gesamte Lösungsmenge: $\{x_1, x_1 \pm 2\pi; x_1 \pm 4\pi, ...\} \cup \{x_2, x_2 \pm 2\pi; x_2 \pm 4\pi, ...\}$

c) Bestimme alle Lösungen der Gleichung $\tan x = b \ (b \in \mathbb{R})$

Lösung:
$$x_1 = \arctan(b)$$

Gesamte Lösungsmenge: $\{x_1, x_1 \pm \pi; x_1 \pm 2\pi, ...\}$

<u>Bsp.</u>: Bestimmen Sie alle Lösungen von $\sin x = \frac{\sqrt{3}}{2}$

6. Funktionen

6.1 Grundbegriffe

- D bezeichnet eine Teilmenge der reellen Zahlen
- Eine Funktion f auf D ist eine Vorschrift, die jedem $x \in D$ genau eine reelle Zahl y zuordnet.

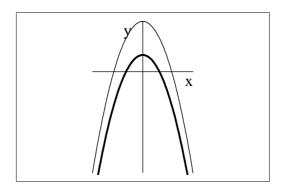
Schreibweise: y = f(x) (x heißt unabhängige, y heißt abhängige Variable)

D heißt Definitionsbereich, $W = \{f(x) : x \in D\}$ Wertemenge von f.

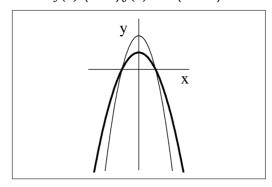
Bem.: Auch y = f(t) oder x = f(t) usw. möglich.

6.2. Graph einer Funktion

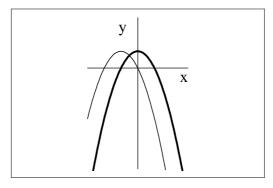
Veranschaulichung einer Funktion erfolgt durch den Graphen $\{(x,f(x)):x\in D\}$ in der Zahlenebene.



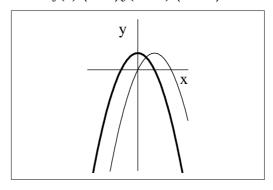
f(x) (dick),f(x) + a (a > 0)



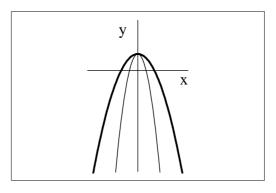
f(x) (dick),af(x) (a > 1)



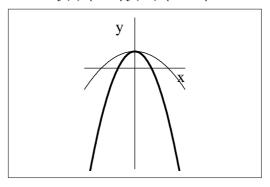
$$f(x)$$
 (dick), $f(x + a)$ ($a > 0$)



f(x) (dick), f(x-a) (a > 0)



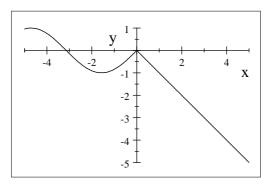
f(x) (dick),f(ax) (a > 1)



f(x) (dick),f(ax) (1 > a > 0)

<u>Bsp.</u>:Skizzieren Sie die Funktion $y = -\ln(x - 1)$ ausgehend von $y = \ln x$ mit dem Zwischenschritt $y = \ln(x - 1)$

6.1.2 Abschnittsweise definierte Funktionen



 $\sin x \text{ für } x < 0, -x \text{ für } x \ge 0$

6.1.3 Verkettung (Hintereinanderausführung) von Funktionen

• f(x) hat Definitionsbereich D_f und Wertebereich W_f g(x) hat Definitionsbereich Dg und Wertebereich Wg

Falls $W_g \subset D_f$, so heißt die Funktion y = f(g(x)) Verkettung von f und g.

• f(x) heißt auch äußere und g(x) innere Funktion.

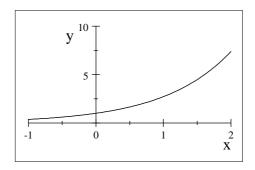
Bsp.: i) Bestimmen Sie den maximalen Definitions- und Wertebereich von $\sin(\ln x)$.

ii) Bestimmen Sie einen sinnvollen Definitionsbereich von $\ln(\sin x)$ sowie den zugehörigen Wertebereich.

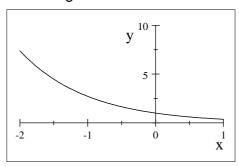
6.2 Eigenschaften von Funktionen

Monotonie

Folgt aus $x_2 > x_1$ stets $f(x_2) > f(x_1)$ (bzw. $f(x_2) < f(x_1)$) so heißt f(x) streng monoton wachsend (bzw. fallend).



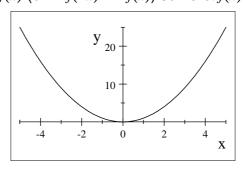
streng monoton wachsend



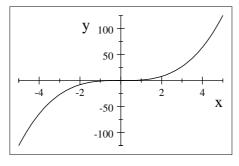
streng monoton fallend

Symmetrie

Gilt für alle x stets f(-x) = f(x) (bzw. f(-x) = -f(x)) so heißt f(x) gerade (bzw. ungerade).



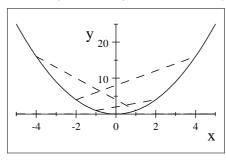
gerade



ungerade

Krümmung

Liegt die Verbindungsstrecke zwischen zwei beliebigen Punkten auf dem Graphen von f(x) immer oberhalb (bzw. unterhalb) des Graphen, so heißt f(x) konvex (bzw. konkav).



konvex

Wendepunkt

Wechsel des Krümmungsverhaltens

6.3 Umkehrfunktion

Lässt sich die Gleichung y = f(x) für jedes $y \in W_f$ eindeutig nach x auflösen, so bezeichnet man die Lösung mit $x = f^{-1}(y)$. Indem man jedem $y \in W_f$ den Wert $f^{-1}(y)$ zuordnet erhält man die Umkehrfunktion f^{-1} mit Definitionsbereich W_f und Wertebereich D_f .

<u>Bem.</u>: Man schreibt wieder $f^{-1}(x)$ statt $f^{-1}(y)$.

- Wertebereich von f(x) = Definitionsbereich von $f^{-1}(x)$ Wertebereich von $f^{-1}(x)$ = Definitionsbereich von f(x)
- Man erhält den Graphen von $f^{-1}(x)$ indem man den Graphen von f(x) an der Winkelhalbierenden des 1./3. Quadranten spiegelt.
- Es gilt: $f^{-1}(f(x)) = x \text{ und } f(f^{-1}(x)) = x$
- Jede streng monoton wachsende (bzw. fallende) Funktion besitzt eine Umkehrfunktion.

Bsp.: Bestimmen Sie die Umkehrfunktion von $f(x) = e^{2x} + 1$

6.4. Weitere Beispiele von Funktionen

6.4.1 Lineare Funktionen

• Allgemeine Form: ax + dy + c = 0

• bzw.
$$y = -\frac{a}{d}x - \frac{c}{d}$$
 (sofern $d \neq 0$)

 \rightarrow Normalform: y = f(x) = mx + b

m Anstieg, b Achsenabschnitt

· Graph: Gerade

a) Punktrichtungsgleichung

Gegeben: Anstieg m und Punkt $P = (x_1; y_1)$ auf der Gerade

$$\rightarrow \qquad y = mx + y_1 - mx_1$$

b) Zweipunktgleichung

Gegeben: Zwei verschiedene Punkte $P_1 = (x_1; y_1)$ und $P_2 = (x_2; y_2)$ auf der Gerade.

$$\rightarrow m = \frac{y_2 - y_1}{x_2 - x_1}$$
 (Rest wie in a))

c) Achsenabschnittsform

$$\frac{x}{a} + \frac{y}{b} = 1$$
 $(a \cdot b \neq 0)$ \rightarrow $y = -\frac{b}{a}x + b$

Bsp.: Bestimmen Sie die Gleichung der Geraden die die Punkte (1;3) und (2;0) enthält.

6.4.2 Parabeln

$$y = ax^2 + bx + c \qquad (a \neq 0)$$

Bem.: Parabel ist nach oben (bzw. unten) geöffnet sofern a > 0 (bzw. a < 0)

Bem.: Durch quadratische Ergänzung lässt sich jede Parabel auf die Scheitelpunktform $y = a(x - x_s)^2 + y_s$ bringen. Der Punkt $(x_s; y_s)$ heißt Scheitelpunkt. y_s ist der größte (a < 0) bzw. kleinste (a > 0) Funktionswert.

<u>Bsp.</u>: Bringe $y = -\frac{1}{2}x^2 + 2x + 3$ auf Scheitelpunktform.

6.5 Grenzwerte von Funktionen

<u>Definition</u>: i) $g \in \mathbb{R}$ heißt rechtsseitiger (bzw. linksseitiger) Grenzwert von f(x) in x = a, falls es zu jeder (noch so kleinen) Zahl $\varepsilon > 0$ eine Zahl $\delta(\varepsilon) > 0$ gibt, so dass gilt:

$$f(x) \in (g - \varepsilon, g + \varepsilon)$$
 für jedes $x \in (a; a + \delta(\varepsilon))$ (bzw. $x \in (a - \delta(\varepsilon); a)$)

<u>Bezeichnung</u>: $\lim_{x \to a+0} f(x) = g$ (rechtsseitiger Grenzwert) bzw. $\lim_{x \to a-0} f(x) = g$ (linksseitiger Grenzwert)

ii)
$$g \in \mathbb{R}$$
 heißt Grenzwert von $f(x)$ in $x = a$, falls $\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = g$
Bezeichnung: $\lim_{x \to a} f(x) = g$

<u>Bem.</u>: Sofern $\lim_{x \to a} f(x) = g$ (oder $\lim_{x \to a+0} f(x) = g$ oder $\lim_{x \to a-0} f(x) = g$) existiert, so ist g eindeutig bestimmt.

<u>Definition</u>: $\lim_{x\to a+0} f(x) = \infty$, falls es zu <u>jeder</u> (noch so großen) Zahl K eine Zahl $\delta(K) > 0$ gibt, so dass gilt:

$$f(x) \in (K, \infty)$$
 für jedes $x \in (a; a + \delta(K))$

$$\underline{\mathsf{Bsp.:}} \lim_{x \to 0+0} \frac{1}{x} = \infty$$

<u>Definition</u>: i) $\lim_{x\to\infty} f(x) = g$ sofern es zu <u>jeder</u> (noch so kleinen) Zahl $\varepsilon > 0$ eine Zahl $\delta(\varepsilon)$ gibt, so dass gilt:

$$f(x) \in (g - \varepsilon, g + \varepsilon)$$
 für jedes $x \in (\delta(\varepsilon); \infty)$

$$\underline{\mathsf{Bsp.}}: \lim_{x \to \infty} \ \frac{1}{x} = 0$$

Die Grenzwerte $\lim_{x\to a-0} f(x) = \infty$, $\lim_{x\to a+0} f(x) = -\infty$, $\lim_{x\to a-0} f(x) = -\infty$, $\lim_{x\to a} f(x) = \infty$ usw. werden analog definiert.

Bemerkung: Meistens "sieht" man den Grenzwert von Funktionen, aber existiert z.B. $\lim_{x\to 0+0}\cos\frac{1}{x}$?

6.5.1 Rechenregeln

Gilt $\lim_{x \to a} f(x) = A$ und $\lim_{x \to a} g(x) = B$, so folgt:

i)
$$\lim_{x \to a} f(x) \pm g(x) = A \pm B$$

ii)
$$\lim_{x \to a} f(x) \cdot g(x) = A \cdot B$$

iii)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$
 sofern $B \neq 0$

<u>Bemerkung:</u> i) Die gleichen Regeln gelten für $x \to a + 0$; $x \to a - 0$; $x \to \infty$; $x \to -\infty$ ii) Die Regeln gelten auch für die Symbole ∞ und $-\infty$, sofern man damit <u>vernünftig</u> rechnet, z.B. $(A \in \mathbb{R})$

•
$$A \pm \infty$$
"=" $\pm \infty$

•
$$\infty + \infty$$
"=" ∞

•
$$\infty \cdot \infty$$
"=" ∞

•
$$A \cdot \infty$$
"="
$$\begin{cases} \infty & \text{falls } A > 0 \\ -\infty & \text{falls } A < 0 \end{cases}$$

•
$$\frac{A}{\infty}$$
"="0

Keine allgemein gültigen Aussagen sind möglich für

• "
$$\frac{\infty}{\infty}$$
"; " $\infty - \infty$ "; " $0 \cdot \infty$ "

Bsp.: i)
$$\lim x^3 - 1000x^2 + 1 =$$

ii)
$$\lim_{x \to \infty} x^3 - 1000x^2 + 1 =$$

$$\lim_{x \to \infty} \lim_{x \to \infty} \frac{2x^2 - x}{x^3 - 1} =$$

iv)
$$\lim_{x \to \infty} \frac{2x^2 - x}{x - 1} =$$

6.5.2 Stetigkeit

<u>Definition</u>: Eine Funktion f heißt in einem Punkt a ihres Definitionsbereichs <u>stetig</u>, sofern $\overline{\lim_{x \to a} f(x)} = f(a)$ gilt.

• Eine Funktion f heißt <u>stetig</u>, falls sie in jedem Punkt des Definitionsbereichs stetig ist.

Anschaulich: "Eine Funktion f ist stetig, sofern man den Graphen von f zeichnen kann, ohne dass man den Stift absetzen muss."

<u>Bem.</u>: i) Funktionen "mit einem Namen" (z.B. Exponentialfunktion, Winkelfunktionen, Logarithmus,...) sind stetig.

ii) Bei abschnittsweise definierten Funktionen, müssen insbesondere in den Punkten die Stetigkeit untersucht werden, in denen sich "die Funktionsvorschrift ändert".

6.6 Gebrochen rationale Funktionen

• Betrachten $r(x) = \frac{p(x)}{q(x)}$

wobei p(x) Polynom vom Grad n und q(x) Polynom vom Grad m. Wir nehmen an, dass m > n.

Bsp.:
$$r(x) = \frac{x-1}{x^2-1}$$
 (*)

• Definitionsbereich *D* von r(x): Alle x mit $q(x) \neq 0$

Bsp.: *D* im Bsp. (*)

• Haben Zähler und Nenner gemeinsame Nullstellen, so wird der Linearfaktor x - a so oft wie möglich gekürzt.

Bsp. Gekürzte Form von (*)

• Ergebnis (nach vollständigem Kürzen): Die verbleibenden Nullstellen des Nenners sind die "echten" Definitionslücken (Pole) von r(x).

Die restlichen "vollständig weggekürzten Nullstellen" des Nenners heißen hebbare Singularitäten von r(x).

Bsp.: Bestimme Pole und hebbare Singularitäten Bsp. (*).

7. Differentialrechnung

<u>Gegeben</u>: Eine Funktion g(x) auf einem Intervall (a;b) und ein Punkt $x_0 \in (a;b)$ Def.: i) g heißt in x_0 differenzierbar, sofern der Grenzwert

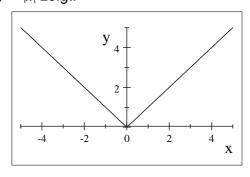
$$\lim_{h\to 0} \frac{g(x_0+h)-g(x_0)}{h} \text{ existiert.}$$

Der Grenzwert heißt erste Ableitung oder Differentialquotient von g in x_0 und wird mit $g'(x_0)$ oder $\frac{dg}{dx}(x_0)$ bezeichnet.

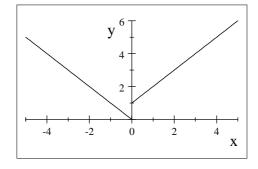
ii) g heißt differenzierbar sofern g in jedem Punkt des Definitionsbereichs (a;b) differenzierbar ist. In diesem Fall erhält man die Funktion g' (Erste Ableitung von g).

<u>Bem.</u>: i) Ist auch g' differenzierbar, so erhält man g'' = (g')', die man als zweite Ableitung von g bezeichnet usw..

- ii) Funktionen mit "Knickstellen" oder Sprungstellen sind dort nicht differenzierbar.
- iii) Jede differenzierbare Funktion ist stetig, die Umkehrung gilt aber nicht, wie das nachfolgende Beispiel f(x) = |x| zeigt.



f(x) = |x|, Knickstelle bei x = 0



Sprungstelle bei x = 0

7.2. Ableitungen von einigen Grundfunktionen

$$g(x)$$
 $g'(x)$ $x^r(r \in \mathbb{R})$ rx^{r-1} e^x e^x $\ln x$ $\frac{1}{x}$ $\sin x$ $\cos x$ $\cos x$ $-\sin x$

7.3 Rechenregeln

Sind die Funktionen h und g differenzierbar auf (a,b), so gilt:

- Summerregel: (h(x) + g(x))' = h'(x) + g'(x)
- Produktregel: (h(x)g(x))' = h'(x)g(x) + h(x)g'(x)
- → Insbesondere: (cg(x))' = cg'(x)
- Quotientenregel: $\left(\frac{h(x)}{g(x)}\right)' = \frac{h'(x)g(x) h(x)g'(x)}{g^2(x)}$
- Kettenregel: h(g(x))' = h'(g(x))g'(x)sofern h und g differenzierbar sind und h(g(x)) gebildet werden kann
- Ableitung der Umkehrfunktion: $(g^{-1}(x))' = \frac{1}{g'(g^{-1}(x))}$ (sofern g'(x) keine Nullstelle hat)

7.4. Anwendungen der Differentialrechnung

7.4.1. Gleichung der Tangente

Ist g in x_0 differenzierbar, so heißt die Gerade, die durch

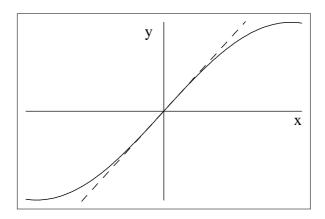
$$y = g(x_0) + g'(x_0)(x - x_0)$$

definiert wird, Tangente an den Graphen von g in $(x_0; g(x_0))$.

Bem.: i) Die Tangente hat also den Anstieg $m = g'(x_0)$ und geht durch den Punkt $(x_0; g(x_0))$. "Sie ist die Gerade, die sich in $(x_0; g(x_0))$ am besten an den Graphen von g anpasst."

ii) Für sehr kleine Werte dx unterscheiden sich die Funktionswerte $g(x_0+dx)$ und die Werte auf der Tangente $y(x_0+dx)$ kaum. Es gilt also

$$g(x_0 + dx) - g(x_0) \approx y(x_0 + dx) - y(x_0) = g'(x_0)dx$$



Tangente an $\sin x$ in (0,0)

7.4.2 Kurvendiskussion (von differenzierbaren Funktionen)

7.4..2.1 Monotonie

Ist g'(x) > 0 (bzw. g'(x) < 0) auf (a,b), so ist g dort streng monoton wachsend (bzw. fallend).

7.4.2.2 Lokale Extremwerte

Möglichkeit 1

• g hat in x_0 einen lokalen Extremwert, sofern $g^{'}$ "dort sein Vorzeichen ändert" Genauer: Gibt es ein $\varepsilon > 0$, so dass

g'(x) > 0 auf $(x_0 - \varepsilon; x_0)$ und g'(x) < 0 auf $(x_0; x_0 + \varepsilon)$, so hat g in x_0 ein lokales Maximum. Falls g'(x) < 0 auf $(x_0 - \varepsilon; x_0)$ und g'(x) > 0 auf $(x_0; x_0 + \varepsilon)$, so hat g in x_0 ein lokales Minimum.

Möglichkeit 2

• g hat in x_0 einen lokalen Extremwert, sofern $g'(x_0) = 0$ und $g''(x_0) \neq 0$. Genauer: Gilt $g'(x_0) = 0$ und $g''(x_0) > 0$, so hat g in x_0 ein lokales Minimum. Falls $g'(x_0) = 0$ und $g''(x_0) < 0$, so hat g in x_0 ein lokales Maximum.

<u>Bem.</u>: $g'(x_0) = 0$ ist notwendig, aber nicht hinreichend für einen lokalen Extremwert.

7.4.3.3 Krümmung

Ist g''(x) > 0 (bzw. g''(x) < 0) auf (a,b), so ist g dort streng konvex (bzw. konkav).

7.4.3.4 Wendepunkt

Möglichkeit 1

• g hat in x_0 einen Wendepunkt, sofern g'' "dort sein Vorzeichen ändert"

Möglichkeit 2

• g hat in x_0 einen Wendepunkt, sofern $g''(x_0) = 0$ und $g'''(x_0) \neq 0$

Bem.: $g''(x_0) = 0$ ist notwendig, aber nicht hinreichend für einen Wendepunkt.

8. Integralrechnung

8.1 Unbestimmtes Integral

Def.: Eine differenzierbare Funktion F heißt Stammfunktion von f:, sofern F' = f gilt.

<u>Bem.</u>: i) Ist F Stammfunktion von $f\Rightarrow F+const$. ist ebenfalls Stammfunktion von f ii) Sind F,G zwei Stammfunktionen von $f\Rightarrow F$ und G unterscheiden sich nur durch eine Konstante.

Bsp.: $\sin x + c, c \in \mathbb{R}$ sind alle Stammfunktionen von $\cos x$

8.1.1 Def.: Das <u>unbestimmte Integral</u> $\int f(x)dx$ bezeichnet die Menge aller Stammfunktionen von f(x).

$$\underline{\mathsf{Bsp.}}: \int \cos x dx = \sin x + c, c \in \mathbb{R}$$

8.1.2 Einige Grundintegrale

$$\underline{\mathsf{Bsp.:}} \int 1 dx = \qquad ; \int x dx = \qquad ; \int x^2 dx =$$

$$\int \sqrt{x} \, dx = \qquad ; \int \frac{1}{\sqrt[3]{x^5}} dx = \qquad ; \int \frac{1}{\sqrt[3]{x^5}} dx =$$

<u>Bem.</u>: Jede stetig (und damit insbesondere jede differenzierbare) Funktion besitzt eine Stammfunktion!

33

8.1.3 Rechenregeln:

i)
$$\int af(x)dx = a \int f(x)dx$$

ii)
$$\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$$

Bsp.:
$$\int 3x^2 + e^x - \frac{1}{x} dx$$

Substitutionsregel:

 $\int f(x)dx = F(x) + c$ sei bekannt, g(x) sei differenzierbar und die Verkettung f(g(x)) sei möglich.

$$\int f(g(x))g'(x)dx = F(g(x)) + c$$

Merkregel dazu:

• Führe die neue Variable z = g(x) ein

$$\rightarrow \frac{dz}{dx} = g'(x) \qquad \rightarrow \qquad dx = \frac{1}{g'(x)} dz$$

$$\to \int f(g(x))g'(x)dx = \int f(z)\frac{g'(x)}{g'(x)}dz = \int f(z)dz = F(z) + c = F(g(x)) + c$$

Spezialfall: (Lineare Substitution): g(x) = ax + b

In diesem Fall ergibt sich: $\int f(ax+b)dx = \frac{1}{a}F(ax+b) + c$

$$\mathsf{Bsp.: i)} \int \sin(2x+3) dx =$$

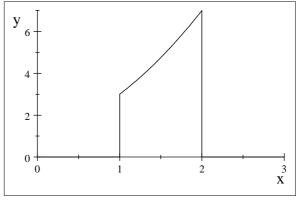
ii)
$$\int (4x - 9)^8 dx =$$

iii)
$$\int x^2 e^{x^3} dx$$
 (Merkregel für $z = x^3$ anwenden.)

8.2 Bestimmtes Integral

Motivation: Gegeben sei eine (positive, stetige) Funktion f(x) auf dem Intervall [a,b]. Gesucht ist die Fläche die durch den Graphen, die Abszissen x = a, x = b und der

x-Achse begrenzt wird. Diese wird als das bestimmete Integral $\int f(x)dx$ bezeichnet.



 $f(x) = x^2 + x + 1$

Lösung (Hauptsatz der Differential- und Integralrechnung)

Bestimme eine (beliebige) Stammfunktion F(x) von f(x). (Diese gibt es, da f(x) als stetig vorausgesetzt wurde).

Dann gilt:
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Bem.: i) Für eine "saubere" Definition des bestimmten Integrals, sowie eine Begründung des Hauptsatzes der Differential- und Integralrechnung sei auf die Anfängervorlesung verwiesen!

ii) Prinzipiell bedeutet "Integrieren", dass der Grenzwert einer Summe gebildet wird. Bei weitem nicht jedes bestimmte Integral dient zur Flächenberechnung!

Bsp.:i)
$$\int_{1}^{2} x^{2} + x + 1 dx = ?$$

NR: $\int x^{2} + x + 1 dx = \frac{x^{3}}{3} + \frac{x^{2}}{2} + x + c \rightarrow$

NR:
$$\int x^2 + x + 1 dx = \frac{x^3}{3} + \frac{x^2}{2} + x + c \rightarrow$$
z.B:
$$F(x) = \frac{x^3}{3} + \frac{x^2}{2} + x \text{ ist eine Stammfunktion von } x^2 + x + 1.$$

$$\Rightarrow \int_{1}^{2} x^2 + x + 1 dx = F(2) - F(1) = \left(\frac{2^3}{3} + \frac{2^2}{2} + 2\right) - \left(\frac{1^3}{3} + \frac{1^2}{2} + 1\right) = \frac{29}{6}$$

$$\lim_{x \to \infty} \int_{1}^{2} x \, dx$$

ii)
$$\int_{0}^{1} e^{x} dx =$$

iii)
$$\int_{0}^{\pi} \sin x dx =$$

Bem.: Ist f(x) nicht nur positiv auf dem Intervall [a,b], so gilt:

 $\int f(x)dx$ ="Flächeninhalt oberhalb der x-Achse - Flächeninhalt unterhalb der x-Achse"

$$\underline{\mathsf{Bsp.}}: \int_{0}^{2\pi} \sin x dx =$$

Rechenregeln

•
$$\int_{a}^{a} f(x)dx = 0$$
•
$$\int_{b}^{a} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \qquad (a < c < b)$$
•
$$\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$