NEISSE-ELEKTRO 2023

Name:
School:

1	2	3	4	5	Σ

Tasks for the finale; 90 min ; with formulary (English edition)
Please use a separate sheet of paper for each task.
Write your name and school on each of these papers.
At the end, fold your solution sheet according to the picture.

Task 1 (20 points)
For the electrical scheme from figure 1 please calculate the following values:
a) equivalent resistance R_{0} of the circuit
b) current flowing in the circuit Is
c) voltage drop U_{R} on marked resistance $R / 4$
where $R=5 \Omega$. The voltage source U is 100 V .

Figure 1
Task 2 (20 points)
In figure 2 a so-called electrical field probe is shown. It constists of two cylindrical capacitors. Such an element is used for measuring of voltages in electrical networks. The main metallic wire with the radius of $r_{0}=0,002 \mathrm{~m}$ is routed in the middle of the central positioned two cylindrical steel plates with length of $0,3 \mathrm{~m}$, radius of $r_{1}=0,01 \mathrm{~m}$ and $r_{2}=0,0104 \mathrm{~m}$ respectively. Between plates, the isolation material with relative permittivity of $\varepsilon_{1}=2,5$ and $\varepsilon_{2}=6,0$ exists. The second plate is grounded. The first plate is connected with a voltmeter $U_{\text {meas }}$.

Figure 2
a) Please draw the equivalent circuit for the filed probe from figure 2.
b) Calculate all the relevant capacitances between the plates and wire.
c) Under assumption, that the electrical wire is under a voltage U_{0} of 10 kV AC , please calculate the voltage $U_{\text {meas }}$ which should be displayed on a voltmeter.

Task 3 (20 points)
The low voltage load with resistance of 5Ω is supplied over the ideal transformer which transfers the typical 230 V 50 Hz into secondary 24 V voltage level. The load is connected to the transformer output with a long wire with resistance of 1Ω.

Figure 3
Calculate
a) the current I_{1} and I_{2}
b) and the power on primary side and power of the load.
c) How many windings has the transformer on the secondary side, if the number of the primary windings is $2300 ?$

Task 4 (20 points)
Given is a magnetic core with the following characteristics:
average length of the core

$$
\mathrm{l}=5 \mathrm{~cm}
$$

Area of core

$$
\begin{aligned}
& A=0,5 \mathrm{~cm}^{2} \\
& \mu_{\mathrm{r}}=1000
\end{aligned}
$$

with two windings of each 10 turns in the opposite direction.

Figure 4
a) Calculate the inductivity L of one winding.
b) Calculate the current in resistor $\mathrm{R}=25 \Omega$ with a voltage source of 10 Veff and 16 kHz frequency.
c) Calculate the current in R if only one winding is left in the circuit!

Task 5 (20 points)
Given is the circuit in figure 5. At time t_{1} a switch is switched to the voltage source. At time t_{2} it switches to the previous position. Before change of switch, the charge process is finished.
$\mathrm{U}=10 \mathrm{~V}, \mathrm{R}_{1}=2 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$

Figure 5
a) Draw the graph with the current I on R_{1}. Draw the x-axis with the time t_{1} and t_{2} according to the figure 6 . Mark the starting values and the values after the charge process for I after t_{1} and t_{2}.
b) Calculate these four values.

Figure 6

